Application of Inverse Heat Conduction Problems in the Slab Solidification Process

2013 ◽  
Vol 395-396 ◽  
pp. 1135-1141
Author(s):  
Yang Yu ◽  
Xiao Chuan Luo ◽  
Yuan Wang

The surface heat transfer coefficient is obtained by the calculation of water-flowing in the second cooling zone of continuous casting; the parameters of this formula are determined by the engineering experiment methods. This paper adopts a new method-numerical calculation method to obtain these parameters. Firstly, the paper uses the method of solving inverse heat conduction problems to calculate the surface heat flux and the surface heat transfer coefficient. Secondly, by using the least square method, the parameters in the formula between the surface heat transfer coefficient and water-flowing are identified. Finally, a plant steel data is used to do some simulation experiments. The results of this simulation prove this numerical method feasibility and effectiveness.

2013 ◽  
Vol 275-277 ◽  
pp. 83-86
Author(s):  
Chun Lin Zhang ◽  
Nian Su Hu ◽  
Wen Yang ◽  
Jian Mei Wang ◽  
Min Li ◽  
...  

With the development of the power grid, the proportion of large capacity unit is increasing rapidly. It requires a more in-depth study on the reliability of the unit, especially for the unit adjusting the peak. This paper concerned on the research of the surface heat transfer coefficient, which is the key factor affect the precision in thermal stress analysis. The surface heat transfer coefficient is obtained via the numerical calculation for the steam’s flow state and the transient heat transfer between rotor. This paper mainly describes the steam’s flow state and the transient heat transfer with the steam seal, and the results show that the direct numerical calculation is resultful in this subject.


Sign in / Sign up

Export Citation Format

Share Document