The Dynamic Analyses of the Eccentric Cylinder Moving on the Inclined Plane

2013 ◽  
Vol 397-400 ◽  
pp. 330-334
Author(s):  
Juan Wei ◽  
Wen Pu Shi

The conservation principle of energy and the mass center movement theorem of rigid body and the moment of momentum theorem relative to the center of mass were used to study the dynamic problems of the eccentric cylinder on the inclined plane. The mass center velocity and the acceleration of the cylinder and the normal pressure and the friction force of the cylinder acting on the inclined plane and etc are given. An example is introduced to show the variations of the physical variants, and the numerical results agree with the theoretical analyses.

2019 ◽  
pp. 105-107
Author(s):  
A. S. Busygin ◽  
А. V. Shumov

The paper considers a method for simulating the flight of a multistage rocket in Matlab using Simulink software for control and guidance. The model takes into account the anisotropy of the gravity of the Earth, changes in the pressure and density of the atmosphere, piecewise continuous change of the center of mass and the moment of inertia of the rocket during the flight. Also, the proposed model allows you to work out various targeting options using both onboard and ground‑based information tools, to load information from the ground‑based radar, with imitation of «non‑ideality» of incoming target designations as a result of changes in the accuracy of determining coordinates and speeds, as well as signal fluctuations. It is stipulated that the design is variable not only by the number of steps, but also by their types. The calculations are implemented in a matrix form, which allows parallel operations in each step of processing a multidimensional state vector of the simulated object.


Author(s):  
Fengchen Wang ◽  
Yan Chen

This paper presents a novel mass-center-position (MCP) metric for vehicle rollover propensity detection. MCP is first determined by estimating the positions of the center of mass of one sprung mass and two unsprung masses with two switchable roll motion models, before and after tire lift-off. The roll motion information without saturation can then be provided through MCP continuously. Moreover, to detect completed rollover statues for both tripped and untripped rollovers, the criteria are derived from d’Alembert principle and moment balance conditions based on MCP. In addition to tire lift-off, three new rollover statues, rollover threshold, rollover occurrence, and vehicle jumping into air can be all identified by the proposed criteria. Compared with an existing rollover index, lateral load transfer ratio, the fishhook maneuver simulation results in CarSim® for an E-class SUV show that MCP metric can successfully predict the vehicle impending rollover without saturation for untripped rollovers. Tripped rollovers caused by a triangle road bump are also successfully detected in the simulation. Thus, MCP metric can be successfully applied for rollover propensity prediction.


Author(s):  
Martin M. Tong

This paper presents an efficient treatment of gyroscopic bodies in the recursive solution of the dynamics of an N-body system. The bodies of interest include the reaction wheels in satellites, wheels on a car, and flywheels in machines. More specifically, these bodies have diagonal inertia tensors. They spin about one of its principal axes, with the moment of inertia along the transverse axes identical. Their center of mass lies on the spin axis. Current recursive solution methods treat these bodies identically as any other body in the system. The proposition here is that a body with gyroscopic children can be collectively treated as a composite body in the recursive solution process. It will be shown that this proposition improves the recursive solution speed to the order(N−m) where m is the number of gyroscopic bodies in the system. A satellite with three reaction wheels is used to illustrate the proposition.


2012 ◽  
Vol 557-559 ◽  
pp. 2303-2306
Author(s):  
Shu Bin Kan

The motion characteristic of key components is a decisional factor to the working reliability and stability of a package machine. In this paper, the motion simulation of a key component is carried out in the ADAMS software environment. By analysis of the force, variance of the center-of-mass and the moment of the component, the mutation point in the motion is found, and then the structure is optimized by selection of different structural parameters. The optimization result shows a significant improvement for the reliability and stability of the whole machine.


2011 ◽  
Vol 211-212 ◽  
pp. 384-388
Author(s):  
Gui Mei Guo ◽  
Lin Hong

Sight-stabilizing mechanisms controlled by diaphragm springs and other damping elements is an important subordinate system of airborne sight stabilizing System. The performances of sight-stabilizing system depend on the characteristics of kinematics and dynamics of the system in a great extent. Among various external moments acting on the rod of the manipulator, such as those moments caused by damper, positioning spring, and restoration spring, the forces by diaphragm springs are most obvious. According to the structure form and motion peculiarity, the rod can be equivalent to a rigid body turning around a fix point. Simulation results reveal that the moment of the restoration spring to the rod is proportional to the angular displacement, and that the moment is the most prominent factor influencing the operating performances among all these moments. Through reasonable adjustments of structural parameters of the restoration spring, the performances of the sight-stabilizing system can be improved greatly; the analysis method provides a basis for guiding the design of concerned structural parameters of sight-stabilizing system.


2012 ◽  
Vol 490-495 ◽  
pp. 2156-2159
Author(s):  
Wu Gang Li

In order to find the principal axes of inertia and calculate their moment of inertia to any plane homogeneous rigid body for calculating easily the moment of inertia to any axis of this rigid body, the principal axes could be found and their moment of inertia could be calculated automatically by using the reading-image of MATLAB to read the image messages about the flat surface of the rigid body and by the procedures which ware made according to the logic relation about the principal axis and the moment of inertia of the rigid body. Applying this method in a homogeneous cube, a result was acquired, error of which is small compared with the theoretical value. So this method is reliable, convenient and practical


2003 ◽  
Vol 125 (4) ◽  
pp. 710-715
Author(s):  
Angel Sanz-Andre´s ◽  
Gonzalo Tevar ◽  
Francisco-Javier Rivas

The increasing use of very light structures in aerospace applications are given rise to the need of taking into account the effects of the surrounding media in the motion of a structure (as for instance, in modal testing of solar panels or antennae) as it is usually performed in the motion of bodies submerged in water in marine applications. New methods are in development aiming at to determine rigid-body properties (the center of mass position and inertia properties) from the results of oscillations tests (at low frequencies during modal testing, by exciting the rigid-body modes only) by using the equations of the rigid-body dynamics. As it is shown in this paper, the effect of the surrounding media significantly modifies the oscillation dynamics in the case of light structures and therefore this effect should be taken into account in the development of the above-mentioned methods. The aim of the paper is to show that, if a central point exists for the aerodynamic forces acting on the body, the motion equations for the small amplitude rotational and translational oscillations can be expressed in a form which is a generalization of the motion equations for a body in vacuum, thus allowing to obtain a physical idea of the motion and aerodynamic effects and also significantly simplifying the calculation of the solutions and the interpretation of the results. In the formulation developed here the translational oscillations and the rotational motion around the center of mass are decoupled, as is the case for the rigid-body motion in vacuum, whereas in the classical added mass formulation the six motion equations are coupled. Also in this paper the nonsteady motion of small amplitude of a rigid body submerged in an ideal, incompressible fluid is considered in order to define the conditions for the existence of the central point in the case of a three-dimensional body. The results here presented are also of interest in marine applications.


2021 ◽  
pp. 1-18
Author(s):  
Young Hun Lee ◽  
Hyunyong Lee ◽  
Hansol Kang ◽  
Jun Hyuk Lee ◽  
Ji Man Park ◽  
...  

Abstract In legged locomotion, the contact force between a robot and the ground plays a crucial role in balancing the robot. However, in quadrupedal robots, general whole-body controllers generate feed-forward force commands without considering the actual torque or force feedback. This paper presents a whole-body controller by using the actual joint torque measured from a torque sensor, which enables the quadrupedal robot to demonstrate both dynamic locomotion and reaction to external disturbances. We compute external joint torque using the measured joint torque and the robot's dynamics, and then transform this to the moment of the center of mass (CoM). Using the computed CoM moment, the moment-based impedance controller distributes a feed-forward force corresponding to the desired moment of the CoM to stabilize the robot's balance. Furthermore, to recover balance, the CoM motion is generated using capture point-based stepping control and zero moment point trajectory. The proposed whole-body controller was tested on a quadrupedal robot, named AiDIN-VI. Locomotive abilities on uneven terrains and slopes and in the presence of external disturbances are verified through experiments.


2017 ◽  
Vol 7 (1) ◽  
pp. 100 ◽  
Author(s):  
María José Beltrán Meneu ◽  
Marina Murillo Arcila ◽  
Enrique Jordá Mora

In this work, we present a teaching proposal which emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. These concepts are introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was motivated after observing students’ difficulties when treating eigenvectors and eigenvalues from a geometric point of view. It was designed following a particular sequence of activities with the schema: exploration, introduction of concepts, structuring of knowledge and application, and considering the three worlds of mathematical thinking provided by Tall: embodied, symbolic and formal.


Author(s):  
Jianyou Han ◽  
Yang Cao ◽  
Penghao Li

This paper deals with dynamic analysis of three methods for the slider in mechanisms. Three methods are introduced under three conditions (the influence of friction force is considered, the slider’s center of mass is not coincide with the hinge point, the slider and its guide have rotation motion). The dynamic analyses of the crank slider mechanism and the flying shear mechanism are given as examples by a developed software based on Visual C++ environment, and application scope of the three methods is concluded at the end of the paper. These results are useful for analyzing and designing mechanisms with sliders, such as choosing suitable slider materials or actuators.


Sign in / Sign up

Export Citation Format

Share Document