Study on Dynamics Characteristics of SINS Damping System in Shock Environment

2013 ◽  
Vol 397-400 ◽  
pp. 355-358
Author(s):  
Xia Qing Tang ◽  
Jun Qiang Gao ◽  
Li Bin Guo ◽  
Huan Zhang

Dynamics characteristics of SINS damping system in shock environment were analyzed by finite element method, as the deformation of dampers may leads to the accuracy loss of SINS. In addition, the influence of absorber stiffness and damping coefficient on dynamics characteristics were studied. The results indicate that the decoupling of vibrations is significant for the accuracy of SINS. However, considering the almost impossible of completely decoupled vibrations, its necessary to carry out an optimal design of the absorber stiffness and damping coefficient to maintain the accuracy of SINS while meeting the requirement of vibration isolation.

1991 ◽  
Vol 113 (4) ◽  
pp. 819-827 ◽  
Author(s):  
Y. Mitsuya ◽  
H. Ota

Averaged static and dynamic lubrication equations are derived in the general form containing anisotropic film thicknesses dependent on roughness orientation. Solving these equations lead to a presentation of the dynamic characteristics of lubricating films existing between computer flying heads and textured media. Squeeze effects owing to moving roughness accompanying high-frequency spacing variation are found to be given as a function of arithmetically averaged film thickness minus harmonically averaged film thickness. The calculation procedure using the finite element method is then presented for the averaged static and dynamic lubrication equations. Stiffness and damping coefficient are demonstrated indicating the effects of roughness orientation and roughness movement. Under the fixed static film conditions, the roughness decreases the stiffness. In contrast to this, the roughness only slightly affects the damping coefficient. Under fixed load and loading point conditions, these relationships are inversed. It is interesting to note that damping coefficients are decreased by longitudinal roughness and are increased by moving transverse roughness. The reason for this tendency is considered to be that the moving transverse roughness serves to generate the squeeze damping force.


2018 ◽  
Vol 9 (2) ◽  
pp. 121-126
Author(s):  
Yanfei Zhang ◽  
Jinliang Gong ◽  
Bin Liu ◽  
Xiangkuan Cao ◽  
Zhiwen Wang

Author(s):  
N Zhang ◽  
A Crowther ◽  
D K Liu ◽  
J Jeyakumaran

A dynamic model of a passenger car automatic transmission and driveline is developed for simulating transient torsional vibration in gearshifts. A finite element method is proposed for presenting the transient dynamics of the parametric system, element matrices are defined and then global inertial, stiffness and damping matrices are formulated corresponding to the defined global coordinate vectors. A four-degree-of-freedom matrix element is developed that describes the rigid body dynamics of the planetary gear set and is then integrated with the driveline system; this element captures the parametric change while the transmission speed ratios vary over gearshifts. Free vibration analysis and a transient 2-3 upshift simulation are discussed and results presented.


Sign in / Sign up

Export Citation Format

Share Document