A Zonal Watershed Hydrological Model Considering Land use and Land Cover Change and its Application

2013 ◽  
Vol 405-408 ◽  
pp. 2201-2207 ◽  
Author(s):  
Xi Nan Li ◽  
Ping Xie ◽  
Yong Zhu

In order to evaluate quantitatively the hydrology and water resources effects of land use and land cover change (LUCC), a zonal watershed hydrological model considering land use and land cover change (ZWHM-LUCC) was developed. According to the daily rainfall, evaporation and discharge data of Wuding River Basin during 1980~2000, the parameters of the model were calibrated and verified. The results show that coefficient of water balance (R) is 1.004 and the qualified rate of annual runoff depth (DR) is86.67% during calibration period 1986~2000 and the R is 0.938 and the DR is 66.67% during calibration verification 1980~1985. The calculated results indicate that this model has good adaptability in Wuding River Basin. The different scenarios of land use/land cover were analyzed by the model, with 2000 year as base year, 13 scenarios were designed, which be helpful to study water-economy-ecology interactions and natural-social dualistic, and provide the scientific basis for Wuding river basin water and soil conservation planning and water resources planning.

2019 ◽  
Vol 10 (3) ◽  
pp. 212-235
Author(s):  
Fabiana da Silva Pereira ◽  
Ima Célia Guimarães Vieira

The objective of this paper was to evaluate the degree of anthropic transformation of a river basin in the Amazon region. We used the digital data of the TerraClass Project to calculate the Anthropic Transformation Index - ATI. In order to verify spatial and temporal changes along a decade in the Gurupi river basin, we used the database of the years 2004 and 2014. The results showed an increase of anthropic changes in the basin over a decade, as a result of forest cover conversion into agricultural and pastures areas. Although the Gurupi river basin remains at a regular level of degradation after a decade, the intensification of land use and land cover change is a threat to the few rainforest remnants of the river basin, which can lead the region to the next level of degradation, if effective forest protection, conservation and restoration actions are not implemented in the region.  


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2014 ◽  
Vol 34 (3) ◽  
pp. 209-231 ◽  
Author(s):  
Robel Ogbaghebriel Berakhi ◽  
Tonny J. Oyana ◽  
Samuel Adu-Prah

Sign in / Sign up

Export Citation Format

Share Document