scholarly journals The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios

2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.

2020 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Larisa S. Seregina ◽  
...  

<p>The Kilombero catchment is a meso-scale catchment of 40,240 km² in south central Tanzania and is characterized by overall data scarcity like many other African catchments. The catchment consists of a highly dynamic floodplain system at its centre which is sustained by water from the surrounding uplands. It also contains a Ramsar site giving evidence to its valuable ecosystem and importance concerning biodiversity conservation. However, in the last decades land use and land cover changes (LULCC) accelerated drastically towards an agriculturally-shaped landscape, especially at the fringes of the wetland. The wetland system provides fertile soils, water as well as other water-related ecosystem services. Nevertheless, the increasing pressure on natural resources jeopardizes the sustainability of the socio-ecological system, especially in the face of climate change.</p><p> </p><p>In this study, methods of hydrology, meteorology and remote sensing were used to overcome data-scarcity and gather a sound representation of natural processes in the catchment. The Soil and Water Assessment Tool (SWAT) was applied to represent the hydrological processes in the catchment. We utilized Landsat images from several decades to simulate the impact of LULCC from the 1970s until today. Furthermore, we applied the Land Change Modeller (LCM) to simulate potential LULCC until 2030 and their impact on water resources. To account for climatic changes, a regional climate model ensemble of the Coordinated Regional Downscaling Experiment (CORDEX) Africa project was analysed and bias-corrected to investigate changes in climatic patterns until 2060, according to the RCP4.5 (representative concentration pathways) and RCP8.5 scenarios.</p><p> </p><p>The climate change signal indicates rising temperatures, especially in the hot dry season, which reinforces the special features of this season. However, the changes in precipitation signals among the analysed RCMs vary between -8.3% and +22.5% of the annual mean values. The results of the hydrological modelling also show heterogeneous spatial patterns within the catchment area. LULCC simulation results show a 6-8% decrease in low flows for the LULCC scenarios, while high flows increase by up to 84% for combined LULCC and climate change scenarios. The effect of climate change is more pronounced compared to the effect of LULCC, but also contains higher uncertainties. This study exemplarily quantifies the impact of LULCC and climate change in a data-scarce catchment and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes and determines hot spots, which are crucial for more detailed analyses like hydrodynamic modelling. The information from this study are an essential part to assist local stakeholders protecting the wetlands integrity on the one hand and to ensure sustainable agricultural practices in order to guarantee food security on the other hand in a catchment that has already changed tremendously and is still target to manifold future plans.</p>


2021 ◽  
Vol 108 ◽  
pp. 103224
Author(s):  
Tárcio Rocha Lopes ◽  
Cornélio Alberto Zolin ◽  
Rafael Mingoti ◽  
Laurimar Gonçalves Vendrusculo ◽  
Frederico Terra de Almeida ◽  
...  

Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


Hydrology ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 2 ◽  
Author(s):  
Kinati Chimdessa ◽  
Shoeb Quraishi ◽  
Asfaw Kebede ◽  
Tena Alamirew

In the Didessa river basin, which is found in Ethiopia, the human population number is increasing at an alarming rate. The conversion of forests, shrub and grasslands into cropland has increased in parallel with the population increase. The land use/land cover change (LULCC) that has been undertaken in the river basin combined with climate change may have affected the Didessa river flow and soil loss. Therefore, this study was designed to assess the impact of LULCC on the Didessa river flow and soil loss under historical and future climates. Land use/land cover (LULC) of the years 1986, 2001 and 2015 were independently combined with the historical climate to assess their individual impacts on river flow and soil loss. Further, the impact of future climates under Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5) scenarios on river flow and soil loss was assessed by combining the pathways with the 2015 LULC. A physically based Soil and Water Assessment Tool (SWAT2012) model in the ArcGIS 10.4.1 interface was used to realize the purpose. Results of the study revealed that LULCC that occurred between 1986 and 2015 resulted in increased average sediment yield by 20.9 t ha−1 yr−1. Climate change under RCP2.6, RCP4.5 and RCP8.5 combined with 2015 LULC increased annual average soil losses by 31.3, 50.9 and 83.5 t ha−1 yr−1 compared with the 2015 LULC under historical climate data. It was also found that 13.4%, 47.1% and 87.0% of the total area may experience high soil loss under RCP2.6, RCP4.5 and RCP8.5, respectively. Annual soil losses of five top-priority sub catchments range from 62.8 to 57.7 per hectare. Nash Stuncliffe Simulation efficiency (NSE) and R2 values during model calibration and validation indicated good agreement between observed and simulated values both for flow and sediment yield.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1801 ◽  
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Land use/land cover (LULC) and climate change affect the availability of water resources by altering the magnitude of surface runoff, aquifer recharge, and river flows. The evaluation helps to identify the level of water resources exposure to the changes that could help to plan for potential adaptive capacity. In this research, Cellular Automata (CA)-Markov in IDRISI software was used to predict the future LULC scenarios and the ensemble mean of four regional climate models (RCMs) in the coordinated regional climate downscaling experiment (CORDEX)-Africa was used for the future climate scenarios. Distribution mapping was used to bias correct the RCMs outputs, with respect to the observed precipitation and temperature. Then, the Soil and Water Assessment Tool (SWAT) model was used to evaluate the watershed hydrological responses of the catchment under separate, and combined, LULC and climate change. The result shows the ensemble mean of the four RCMs reported precipitation decline and increase in future temperature under both representative concentration pathways (RCP4.5 and RCP8.5). The increases in both maximum and minimum temperatures are higher for higher emission scenarios showing that RCP8.5 projection is warmer than RCP4.5. The changes in LULC brings an increase in surface runoff and water yield and a decline in groundwater, while the projected climate change shows a decrease in surface runoff, groundwater and water yield. The combined study of LULC and climate change shows that the effect of the combined scenario is similar to that of climate change only scenario. The overall decline of annual flow is due to the decline in the seasonal flows under combined scenarios. This could bring the reduced availability of water for crop production, which will be a chronic issue of subsistence agriculture. The possibility of surface water and groundwater reduction could also affect the availability of water resources in the catchment and further aggravate water stress in the downstream. The highly rising demands of water, owing to socio-economic progress, population growth and high demand for irrigation water downstream, in addition to the variability temperature and evaporation demands, amplify prolonged water scarcity. Consequently, strong land-use planning and climate-resilient water management policies will be indispensable to manage the risks.


2018 ◽  
Vol 2 (2) ◽  
pp. 195
Author(s):  
Alfin Murtadho ◽  
Siti Wulandari ◽  
Muhammad Wahid ◽  
Ernan Rustiadi

<p class="ISI-Paragraf">Jabodetabek and Bandung Raya metropolitan region experienced an urban expansion phenomenon that caused the two metropolitan regions to become increasingly connected by a corridor and form a mega-urban region caused by the conurbation process. Purwakarta regency is one of the regions in Jakarta-Bandung corridor that experienced the impact of Jakarta-Bandung conurbation process. This study aims to analyze the level of regional development, to analyze land cover change that occurred, and to predict Purwakarta Regency land use/land cover in 2030. Regional development analysis is done by using the Scalogram method based on Potential Village data of year 2003 and 2014. Land cover change analysis is done through spatial analysis by overlaying land cover Landsat Satellite Image of year 2000 and 2015. Land use/land cover prediction in 2030 is conducted through spatial modelling of Cellular Automata Markov method. Purwakarta Regency experienced an increase in regional development within the period of 11 years (2003 to 2014), which is marked by a decrease in the percentage of the number of villages that are in hierarchy III and increase in the percentage of the number of villages that are in hierarchy II and I. In general, within 15 years (2000 to 2015) Purwakarta Regency has increasing number of built-up area and mixed gardens, meanwhile dry land, forest, paddy field, and water bodies tend to decrease. The results of CA Markov analysis show that the built-up area is predicted to continue to increase from 2000 to 2030, meanwhile paddy fields and water bodies will continue to decrease.</p>


Sign in / Sign up

Export Citation Format

Share Document