freshwater availability
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 18)

H-INDEX

13
(FIVE YEARS 2)

Abstract Warmer and shorter winters from climate change will reduce snowpacks in most seasonally snow-covered regions of the world, with consequences for freshwater availability in spring and summer when people and ecosystems demand water most. Recent record low snowpacks, such as those in the winters of 2013/14 and 2014/15 in the Western United States, have led to a surge in research on ‘snow droughts,’ which are pointed to as harbingers of global warming that pose significant societal hazards. Yet despite the importance of understanding snow droughts to best prepare for their attendant impacts, the concept remains amorphous, with no agreed-upon definition of what they are, how best to measure them, and how such snow droughts connect to warm-season impacts. These knowledge gaps limit our understanding of the risks posed by snow droughts in the present and future, and thus our preparedness for their differential impacts on freshwater resources. To address these issues, we compile a hemispheric ensemble of in situ, satellite, and reanalysis snowpack datasets. We use this ensemble to evaluate the scientific challenges and uncertainties arising from differences in defining and measuring snow droughts, and identify opportunities to leverage this information to better understand the significance of snow droughts. We show that a clearer quantification of what constitutes a snow drought, including its uncertainties, improves our ability to anticipate costly and disruptive warm-season droughts, which is vital for informing risk management and adaptation to changing snow regimes.


2021 ◽  
Vol 4 ◽  
Author(s):  
Scott T. Allen ◽  
William H. Conner

The interception of precipitation by plant canopies can alter the amount and spatial distribution of water inputs to ecosystems. We asked whether canopy interception could locally augment water inputs to shrubs by their crowns funneling (freshwater) precipitation as stemflow to their bases, in a wetland where relict overstory trees are dying and persisting shrubs only grow on small hummocks that sit above mesohaline floodwaters. Precipitation, throughfall, and stemflow were measured across 69 events over a 15-months period in a salinity-degraded freshwater swamp in coastal South Carolina, United States. Evaporation of intercepted water from the overstory and shrub canopies reduced net precipitation (stemflow plus throughfall) across the site to 91% of gross (open) precipitation amounts. However, interception by the shrub layer resulted in increased routing of precipitation down the shrub stems to hummocks – this stemflow yielded depths that were over 14 times larger than that of gross precipitation across an area equal to the shrub stem cross-sectional areas. Through dimensional analysis, we inferred that stemflow resulted in local augmentation of net precipitation, with effective precipitation inputs to hummocks equaling 100–135% of gross precipitation. Given that these shrubs (wax myrtle, Morella cerifera) are sensitive to mesohaline salinities, our novel findings prompt the hypothesis that stemflow funneling is an ecophysiologically important mechanism that increases freshwater availability and facilitates shrub persistence in this otherwise stressful environment.


2021 ◽  
Vol 35 (1) ◽  
pp. 31-33
Author(s):  
Madison Powers

The coming decades will present an immense challenge for the planet: sustainably feeding nearly ten billion people that are expected to be alive by 2050. This is no small task, and one that intersects with climate change, geopolitics, the increased globalization of agricultural markets, and the emergence of new technologies. The world faces a challenge of increased demand, propelled by an expanding world population and a global shift in dietary patterns toward more resource-intensive foods. Moreover, changes in demand occur in the context of declining soil fertility and freshwater availability, agriculture's growing contribution to water pollution and climate change, and the emerging threats to agricultural productivity caused by climate disruption.


2020 ◽  
Vol 28 (4) ◽  
pp. 528-545
Author(s):  
Barrie Bonsal ◽  
Rajesh R. Shrestha ◽  
Yonas Dibike ◽  
Daniel L. Peters ◽  
Christopher Spence ◽  
...  

The western cordillera supplies freshwater across much of western Canada mainly through meltwater from snow and ice. This “alpine water tower” has been, and is projected to be, associated with changes in the seasonality and amount of freshwater availability, which are critical in supporting the societal and environmental flow needs of the region. This study incorporates existing information to synthesize and evaluate current and future freshwater supplies and demands across major north-, west-, and east-flowing sub-basins of the Canadian western cordillera. The assessment of supply indicators reveals several historical changes that are projected to continue, and be exacerbated, particularly by the end of this century and under a high emission scenario. The greatest and most widespread impact is the seasonality of streamflow characterized by earlier spring freshets, increased winter, and decreased summer flow. Future winter and spring warming over all basins will result in decreases in end of season snow and glacier mass balance with greatest declines in more southern regions. In many areas, there will be a greater likelihood of summer freshwater shortages. All sub-basins have environmental and economic freshwater demands and pressures, especially in more southern watersheds where population and infrastructure are more prevalent and industrial, agricultural, and water energy needs are higher. Concerns regarding the continued ability to maintain suitable aquatic habitats and adequate water quality are issues across all regions. These water supply changes along with continued and increasing demands will combine to create a variety of freshwater vulnerabilities across all regions of western Canada. Southern basins including the South Saskatchewan and Okanagan are likely to experience the greatest vulnerabilities due to future summer freshwater supply shortages and increasing economic demands. In more northern areas, vulnerabilities primarily relate to how the rapidly changing landscape (mainly associated with permafrost thaw) impacts freshwater quantity and quality. These vulnerabilities will require various adaptation measures in response to alterations in the timing and amount of future freshwater supplies and demands.


2020 ◽  
Author(s):  
Xander Huggins ◽  
Tom Gleeson ◽  
Matti Kummu ◽  
Samuel Zipper ◽  
Tara Troy ◽  
...  

2020 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Denise Cáceres ◽  
Stephanie Eisner ◽  
Martina Flörke ◽  
Christoph Niemann ◽  
...  

<p>Freshwater availability is of vital importance for humans, freshwater biota and ecosystem functions. In the past decades, global hydrological models (GHMs) were developed to improve understanding of the global freshwater situation in a globalized word, by filling gaps in observational coverage and assessing scenarios of the future under consideration of different socioeconomic developments and climate change. The Water Global Assessment and Prognosis (WaterGAP) model was one of the first GHMs developed to evaluate freshwater resources and their use for both historical and future conditions. It consists of five water use models (for irrigation, domestic, cooling of thermal power plants, manufacturing, and livestock sectors) and the WaterGAP Global Hydrology Model (WGHM). Recently, the latest model version, WaterGAP 2.2d, was finalized, containing a number of enhancements and revisions such as a river storage-based flow velocity approach, improvements in modelling groundwater recharge in dry environments and integration of historical development of irrigated areas.</p><p>This presentation provides an overview about the WaterGAP 2.2d scheme and features, assesses global freshwater resources (runoff and streamflow) and water balance components, and provides insights to evaluation results against observed streamflow, GRACE total water storage and the AQUASTAT database.</p>


Sign in / Sign up

Export Citation Format

Share Document