The Spectral Properties and Thermal Stability of AlCr-AlCrON Solar Selective Absorber Coating

2013 ◽  
Vol 423-426 ◽  
pp. 419-425
Author(s):  
Ya Nan Li ◽  
Xiang Rong Liu ◽  
Yin Fang Cui ◽  
Jia Qi Liu ◽  
Guang Ming Xie ◽  
...  

Spectrally selective AlCr-AlCrON cermet solar absorber coating has been deposited on Cu substrate experimentally by reactive DC magnetron sputtering and heat-treated in air at 300°C for 2h. The spectral properties and thermal stability of the as-synthesized AlCr-AlCrON coatings were characterized. The solar absorptance and thermal emittance of the as-synthesized AlCr-AlCrON coating are 0.926 and 0.065, respectively. In addition, after heat treatment at 300 ° C for 500 h in air, the spectral properties of the as-synthesized AlCr-AlCrON coating is virtually unchanged. The results indicate that the as-synthesized AlCr-AlCrON coating has good spectral properties and thermal stability, which will be a good selective absorbing coating for mid-temperature solar vacuum collector tubes.

Author(s):  
Lijie Qu ◽  
Zhenyu Wang ◽  
Jing Qian ◽  
Zhengbin He ◽  
Songlin Yi

Abstract Acidic aluminum sulfate hydrolysis solutions can be used to catalyze the thermal degradation of wood in a mild temperature environment, and thus reduce the temperature required for heat treatment process. To improve the dimensional and thermal stability of Chinese fir during heat treatment at 120 °C, 140 °C and 160 °C, this study investigated the effects of soaking pretreatment with 5%, 10% and 15% aluminum sulfate on the chemical and structural changes of the heat-treated Chinese fir. The results indicated that the samples treated at 15% aluminum sulfate concentration and 160 °C heat treatment achieved the best dimensional and thermal stability. Chemical analyses by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the catalysis of aluminum sulfate resulted in degradation of hemicelluloses during the heat treatment, and an increase in the soaking concentration and heat treatment temperature also affected the thermal degradation of celluloses. The scanning electron microscope (SEM) and mass changes test results proved that the hydrolyzed aluminum flocs mainly adhered to the inner wall of the wood tracheid as spherical precipitates, and when the soaking concentration reached 10% and 15%, a uniform soaking effect could be achieved. The thermogravimetric (TG) analysis revealed the soaking pretreatment effectively improved the thermal stability of the heat-treated wood by physically wrapping and promoting the formation of a carbon layer on the wood surface during heat treatment. Thus, aluminum sulfate soaking pretreatment exerted a great effect on the dimensional and thermal stability of wood, allowing heat treatment to be performed at a lower temperature.


2015 ◽  
Vol 1102 ◽  
pp. 67-71 ◽  
Author(s):  
Rui Hua Yang ◽  
Jin Yang Liu ◽  
Li Mei Lin ◽  
Fa Chun Lai ◽  
Yan Qu ◽  
...  

In terms of good optical properties and high thermal stability, Mo/Si3N4/Mo/Si3N4/SiO2 coatings based on metal/dielectric multilayer structure were adapted to the solar selective coating at high operating temperatures. The coatings exhibited high solar absorptance in the range of 0.924 ~ 0.936 and low thermal emittance of 0.114 ~ 0.118. The coatings deposited on quartz substrates were thermally stable up to 625 °C in air for 2 h, while they were degraded at 650 °C from the characterization of the absorptance and emittance. The degradation of the coatings was mainly due to the oxidation of molybdenum in air, which was confirmed by Raman spectroscopy. Compared with the thermal stability in air, the coatings were much more stable in vacuum under high temperature. The remarkable thermal stability of the Mo/Si3N4/Mo/Si3N4/SiO2 coatings in air and in vacuum makes them suitable to be applied at high temperature applications.


2008 ◽  
Vol 8 (9) ◽  
pp. 4822-4825 ◽  
Author(s):  
Jae-Youn Choi ◽  
Wenguo Dong ◽  
Dong Joo Choi ◽  
Chong S. Yoon ◽  
Young-Ho Kim

Nanoparticles of Cu or Cu oxide dispersed in a polyimide (PI) film were fabricated by reaction of polyamic acid with a thin Cu film during imidization. In this paper, the thermal stability of the Cu or Cu oxide nanoparticles was investigated under various atmospheres. The PI/nanoparticle composites were heat-treated at 140 °C and 250 °C in air, N2, Ar, and 5% H2 atmospheres. Nanoparticles in the PI film were characterized by UV-VIS spectroscopy and transmission electron microscopy. The optical absorption peaks originating from Cu or Cu2O nanoparticles were changed by heat-treatment in different atmospheres. When Cu nanoparticles were oxidized by heat-treatment in air, the surface plasmon resonance (SPR) peak originating from the Cu nanoparticles disappeared. The quantum confined absorption peak of Cu2O was not affected by heat-treatment in N2 or Ar. Cu2O nanoparticles were reduced by heat-treatment at 250 °C in 5% H2 atmosphere and a new SPR peak appeared. Our results show that Cu nanoparticles are easily oxidized and highly dense Cu nanoparticles can be formed by reducing Cu2O nanoparticles.


2011 ◽  
Vol 189-193 ◽  
pp. 688-691 ◽  
Author(s):  
Wang Ping Wu ◽  
Zhao Feng Chen ◽  
Xin Lin

Iridium (Ir) could be taken as high temperature protective coating for the refractory metals. Ir coating was deposited on the surface of molybdenum (Mo) substrate by double glow plasma. Thermal stability of the coating was investigated at 1400°C for 90 min, while Ar gas was inputted to hold the vacuum pressure. The microstructure of the surface and interface of the Ir coating were observed by SEM and TEM. The phase transition of the coating was determined by X-ray diffraction. Many micropores and microbubbles appeared in the surface of the as-heat treated coating. The interfacial reaction between the Mo substrate and Ir coating occurred during heat treatment, and Ir21.5Mo8.5 phase was formed at 1400°C. The experimental results indicated that the integrity of the Ir coating was not degraded after heat treatment.


Holzforschung ◽  
2016 ◽  
Vol 70 (5) ◽  
pp. 467-474 ◽  
Author(s):  
Paulo Ivan Andrade ◽  
Solange de Oliveira Araújo ◽  
Duarte Miranda Neiva ◽  
Benedito Rocha Vital ◽  
Angélica de Cássia Oliveira Carneiro ◽  
...  

Abstract Wood-based panels made of waste and recycled raw material are lacking of dimensional stability. The aim of this study is to evaluate the potential beneficial effect of heat treatment (HT) on the properties of particleboards produced from waste of Pinus sp. used for packaging. The wood particles were heat treated at 180°C, 200°C and 220°C after grinding, and panels were produced with incorporation of 25%, 50%, 75% and 100% HT particles. The materials served as reference were particles without HT. Mass loss at 180°C and 200°C was small but increased significantly to 10.6% at 220°C. The HT caused a partial degradation of hemicelluloses, thereby the relative lignin content increased from 29.7% to 37.8% for the HT220°C samples. Thermogravimetry revealed higher thermal stability of the HT particles. The equilibrium moisture content decreased with HT, e.g. panels with HT220°C showed 30% lower compared to the reference. Swelling of the panels was lowered by 30% (panel with 75% HT material) compared to the reference. The results with HT pine were successful in terms of dimensional stability and lower hygroscopicity; however, the panels lost some strength properties.


RSC Advances ◽  
2016 ◽  
Vol 6 (68) ◽  
pp. 63867-63873 ◽  
Author(s):  
Xiang-Hu Gao ◽  
Zhi-Ming Guo ◽  
Qing-Fen Geng ◽  
Peng-Jun Ma ◽  
Ai-Qin Wang ◽  
...  

A tandem layer structured SS/TiC–ZrC/Al2O3 coating has been prepared by magnetron sputtering as a high temperature spectrally selective solar absorber.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 148-159
Author(s):  
Nirajan Ojha ◽  
Iuliia Dmitrieva ◽  
Wilfried Blanc ◽  
Laeticia Petit

Even though the (75 NaPO3-25 CaF2) (in mol%) glass can be heat-treated into transparent glass-ceramic with Er3+ doped CaF2 crystals precipitating in the volume of the glass during heat-treatment, this glass was found to be a poor glass former, limiting its use as upconverter under 975 nm pumping. In this study, the impact of the glass composition on the thermal, optical and structural properties of the glass was investigated in order to understand how the glass composition can be tailored for the development of thermally stable upconverter glass-based material. The addition of MgO, Fe2O3 and Al2O3 in the NaPO3-CaF2 glass system increases the thermal stability of glass due to the depolymerization of the glass network. However, the changes in the glass composition also impacted on the nucleation and growth process. Indeed, CaF2 and other crystals were found in the newly developed glasses after heat-treatment leading to glass-ceramics with lower intensity of upconversion than the (75 NaPO3-25 CaF2) glass-ceramic used as a reference. Glasses were also prepared with different concentrations of Er2O3 and ErF3. These glasses were found to be promising as not only are they thermally stable, but they also exhibit green and red emission with high intensity under 975 nm pumping due to Er3+ clustering.


2020 ◽  
Vol 206 ◽  
pp. 110219 ◽  
Author(s):  
Yuping Ning ◽  
Jian Wang ◽  
Chunhui Ou ◽  
Changzheng Sun ◽  
Zhibiao Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document