Cartridge-Case Extracting Analysis of some Breech Mechanism Based on Flexible Body Dynamics Method

2010 ◽  
Vol 43 ◽  
pp. 338-341
Author(s):  
Wen Xian Tang ◽  
Jian Zhang ◽  
Pan Zhang

Dynamic characteristics of the breech mechanism directly affect warship’s reliability. Most of the research on the breech mechanism is related to locking chamber and firing primer, while few articles are found out about extracting cartridge-case. In this paper, nonlinear finite element method is used to research on flexible body dynamics of the breech mechanism. At first, structure and cartridge-case extracting process is analyzed. Then stresses and case speeds caused during the extracting process are tested. Flexible body dynamics model of some breech mechanism is built by using PROE, Hypermesh and ABAQUS software. Three models are used to compared with the experiment, which include three different element types. Finally, kinetic energy, internal energy, extractor stresses and case average speed are analyzed after wear of the extracting template.

2010 ◽  
Vol 97-101 ◽  
pp. 2594-2597 ◽  
Author(s):  
Yi Liu ◽  
Guo Ding Chen ◽  
Ji Shun Li ◽  
Yu Jun Xue

The main objective of this study was to model and simulate a multi-flexible-body three-dimensional model for researching the Multi – rope Friction Winder system. By introducing the multi-flexible-body dynamics method, a multi-flexible-body virtual prototype of the winder is been builded with the RecurDyn software package. Kinematics and dynamics characteristic date are obtained by computer-aided dynamic simulation of virtual Multi – rope friction winder. The result is in accord with theoretical analysis. The research work will provide a powerful tool and useful method for the design of economic and credible elevator system. The approach can be generalized to analysis other flexible drive fields.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989585 ◽  
Author(s):  
Seongsu Kim ◽  
Juhwan Choi ◽  
Jin-Gyun Kim ◽  
Ryo Hatakeyama ◽  
Hiroshi Kuribara ◽  
...  

In this work, we propose a robust modeling and analysis technique of the piston-lubrication system considering fluid–structure interaction. The proposed schemes are based on combining the elastohydrodynamic analysis and multi-flexible body dynamics. In particular, multi-flexible body dynamics analysis can offer highly precise numerical results regarding nonlinear deformation of the piston skirt and cylinder bore, which can lead to more accurate results of film thickness for gaps filled with lubricant and of relative velocity of facing surfaces between the piston skirt and the cylinder block. These dynamic analysis results are also used in the elastohydrodynamic analysis to compute the oil film pressure and asperity contact pressure that are used as external forces to evaluate the dynamic motions of the flexible bodies. A series of processes are repeated to accurately predict the lubrication characteristics such as the clearance and oil film pressure. In addition, the Craig–Bampton modal reduction, which is a standard type of component mode synthesis, is employed to accelerate the computational speed. The performance of the proposed modeling schemes implemented in the RecurDyn™ multi-flexible body dynamics environment is demonstrated using a well-established numerical example, and the proposed simulation methods are also verified with the experimental results in a motor cycle engine (gasoline) which has a four cycle, single cylinder, overhead camshaft (OHC), air cooled.


Author(s):  
H. J. Cho ◽  
H. S. Ryu ◽  
D. S. Bae ◽  
J. H. Choi ◽  
B. Ross

Abstract A recursive implementation method for the equations of motion and kinematics is presented. Computational structure of the kinematic and dynamic equations is exploited to systematically implement a dynamic analysis program RecurDyn. A differential algebraic equation solution method with implicit numerical integrators is discussed. Virtual body concept is introduced for the flexible body dynamics. The accuracy of the flexible body solutions is estimated by an error measure and is improved by the dynamic correction mode method. Several examples are solved to demonstrate the efficiency of the proposed methods.


2019 ◽  
Vol 972 ◽  
pp. 93-98
Author(s):  
Nurulain Hanida Mohamad Fodzi ◽  
M.H. Mohd Hisbany

This paper deals with behavior and capacity of punching shear resistance for ribbed slabs produce from self-compacting fiber reinforced concrete (SCFRC) by application of nonlinear finite element method. The analysis will be achieved by using ABAQUS software. The nonlinear finite element analysis by ABAQUS will be compare with the experimental results. Results and conclusions may be useful for establishing recommendation and need to be acknowledged.


1994 ◽  
Vol 116 (3) ◽  
pp. 777-784 ◽  
Author(s):  
D. C. Chen ◽  
A. A. Shabana ◽  
J. Rismantab-Sany

In both the augmented and recursive formulations of the dynamic equations of flexible mechanical systems, the inerita, constraints, and applied forces must be properly defined. The inverse dynamics is a commonly used approach for the force analysis of mechanical systems. In this approach, the system is kinematically driven using specified motion trajectories, and the objective is to determine the driving forces and torques. In flexible body dynamics, however, a force that acts at a point on the deformable body is equipollent to a system, defined at another point, that consists of the same force, a moment that depends on the relative deformation between the two points, and a set of generalized forces associated with the elastic coordinates. Furthermore, a moment in flexible body dynamics is no longer a free vector. It is defined by the location of its line of action as well as its magnitude and direction. The joint reaction and generalized constraint forces represent equipollent systems of forces. Both systems in flexible body dynamics are function of the deformation. In this investigation, a procedure is developed for the determination of the joint reaction forces in spatial flexible mechanical systems. The mathematical formulation of some mechanical joints that are often encountered in the analysis of constrained flexible mechanical systems is discussed. Expressions for the generalized reaction forces in terms of the constraint Jacobian matrices of the joints are presented. The effect of the elastic deformation on the reaction forces is also examined numerically using the spatial flexible multibody RSSR mechanism that consists of a set of interconnected rigid and elastic bodies. The procedure described in this investigation can also be used to determine the joint torques and actuator forces in kinematically driven spatial elastic mechanism and manipulator systems.


Author(s):  
Haiyan Song ◽  
Jiansheng Zhou ◽  
Lifu Liang ◽  
Zongmin Liu

The theoretical analysis of flexible multi-body system is a long-term and complicated problem. So the single flexible body dynamics should be studied firstly. Quasi-variational principle of non-conservative single flexible body dynamics is established under the cross-link of particle rigid body dynamics and deformable body dynamics. Some important problems are studied in quasi-variational principle of non-conservative single flexible body dynamics. The vibration problem of unrestrained beam can be solved very well by using quasi-variational principle.


Sign in / Sign up

Export Citation Format

Share Document