Marine Ducted Propeller Blade Fracture Fault Diagnosis Technology Based on CFD

2014 ◽  
Vol 488-489 ◽  
pp. 1219-1223
Author(s):  
Li Jian Ou ◽  
Feng Hong Wang ◽  
Wei Zhang

The numerical model of the unsteady flow field of ducted propellers is based on CFD (computational fluid dynamics). By applying the numerical model, the unsteady flow field of the ducted propeller with the fracture in different positions of a certain blade is simulated and its unsteady hydrodynamic performance is numerically analyzed. By extracting the fluctuating pressure data of the duct inner wall monitoring points,the fluctuating pressure-time oscillogram of ducted propellers is obtained, and then the spectrum is obtained by FFT transformation of the oscillogram. A blade fracture fault diagnosis technology of ducted propellers, which combines oscillogram analysis method with spectrum analysis method, is put forward by analyzing and studying the oscillogram and the spectrum.

2013 ◽  
Vol 300-301 ◽  
pp. 1071-1076 ◽  
Author(s):  
Li Jian Ou ◽  
De Yu Li ◽  
Wei Zhang

The numerical model of the unsteady flow field of ducted propellers is based on CFD (computational fluid dynamics). By applying the numerical model, the unsteady hydrodynamic performance of the ducted propeller with the fracture at different positions of a certain blade is numerically analyzed under three different wake current fields. Based on regress analysis ,the relationships between the mean KQ、mean KT and the quantity of the blade fracture of ducted propellers are obtained; and the relationships between hydrodynamic coefficients Kp, KQ, KFy (Bearing force coefficient of the propeller) and wake current fields , the quantity of the blade fracture are respectively further analyzed. The results show that: (1) with the increase of the quantity of the blade fracture, the amplitude of bearing force periodic variation of propellers increases, while the thrust and torque reduce; (2) the bearing force of propellers is similarly sine-varying, and the frequency of its variation is unrelated to the normal variation frequency of the wake current field. The more non-uniform the wake current field is, the more the amplitude of its periodic variation is; (3) the thrust and torque of propeller are similarly sine-varying, and the frequencies of their variation are related to the normal variation frequency of the wake current field. And the frequencies equal the shaft frequency multiplied the normal variation frequency of the wake current field. The more non-uniform the wake current field is, the more the amplitude of their periodic variation is.


Author(s):  
Jiaming Wu ◽  
Chengwei Zhang ◽  
Zhijian Ye ◽  
Ying Xu ◽  
Weiwen Feng ◽  
...  

A practical approach to simulate hydrodynamic performance of ducted propellers attached in an underwater vehicle under the influence of flow field of the vehicle is proposed, hydrodynamic characteristics of the propeller when the vehicle in a dynamic yawing motion is studied numerically. In the research, 3D geometric models of the duct, propeller and underwater vehicle are first constructed according to their geometrical features. Computational fluid dynamics (CFD) technique based on the finite volume method and multi-sliding mesh technique are applied to solve the Navier-Stokes equations which govern the fluid motions around the duct, propeller and underwater vehicle when the vehicle are in a yawing motion. These equations are solved numerically with the CFD code FLUENT. With the proposed numerical simulation approaches, the hydrodynamic phenomenon of thrusts generated from the ducted propellers in the vehicle system under the flow field influence of the vehicle’s yawing motion are analyzed. Results of our numerical simulation indicate that the influence of flow field caused by the underwater vehicle on the thrusts of the ducted propellers is not negligible; when studying the thrust characteristics of a ducted propeller in an underwater vehicle system, the thrust nature of the propeller can only be evaluated objectively on the condition that the vehicle and the ducted propeller are combined together into an integrated system, and the numerical simulation are conducted in such an integrated system.


2018 ◽  
Vol 10 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Gang Chen ◽  
Shiguang Xu ◽  
Chunxue Liu ◽  
Lei Lu ◽  
Liang Guo

Abstract Mine water inrush is one of the important factors threatening safe production in mines. The accurate understanding of the mine groundwater flow field can effectively reduce the hazards of mine water inrush. Numerical simulation is an important method to study the groundwater flow field. This paper numerically simulates the groundwater seepage field in the GaoSong ore field. In order to ensure the accuracy of the numerical model, the research team completed 3,724 field fissure measurements in the study area. The fracture measurement results were analyzed using the GEOFRAC method and the whole-area fracture network data were generated. On this basis, the rock mass permeability coefficient tensor of the aquifer in the study area was calculated. The tensor calculation results are used in the numerical model of groundwater flow. After calculation, the obtained numerical model can better represent the groundwater seepage field in the study area. In addition, we designed three different numerical models for calculation, mainly to explore the influence of the tensor assignment of permeability coefficient on the calculation results of water yield of the mine. The results showed that irrational fathom tensor assignment would cause a significant deviation in calculation results.


2019 ◽  
Vol 63 (4) ◽  
pp. 219-234
Author(s):  
João Baltazar ◽  
José A. C. Falcão de Campos ◽  
Johan Bosschers ◽  
Douwe Rijpkema

This article presents an overview of the recent developments at Instituto Superior Técnico and Maritime Research Institute Netherlands in applying computational methods for the hydrodynamic analysis of ducted propellers. The developments focus on the propeller performance prediction in open water conditions using boundary element methods and Reynolds-averaged Navier-Stokes solvers. The article starts with an estimation of the numerical errors involved in both methods. Then, the different viscous mechanisms involved in the ducted propeller flow are discussed and numerical procedures for the potential flow solution proposed. Finally, the numerical predictions are compared with experimental measurements.


2021 ◽  
pp. 107754632110036
Author(s):  
Shihui Huo ◽  
Hong Huang ◽  
Daoqiong Huang ◽  
Zhanyi Liu ◽  
Hui Chen

Turbo pump is one of the elements with the most complex flow of liquid rocket engine, and as an important component of turbo pump, an impeller is the weak point affecting its reliability. In this study, a noncontact modal characteristic identification technique was proposed for the liquid oxygen pump impeller. Modal characteristics of the impeller under three different submerged media, air, pure water, and brine with same density as liquid oxygen, were tested based on the noncontact modal identification technology. Submersion state directly affects the modal frequencies and damping ratio. The transient vibration response characteristics of the impeller excited by the unsteady flow field was achieved combining with unsteady flow field analysis and transient dynamic analysis in the whole flow passage of the liquid oxygen pump. Vibration responses at different positions of the impeller show 10X and 20X frequencies, and the amplitude at the root of short blade is significant, which needs to be paid more attention in structural design and fatigue evaluation.


2009 ◽  
Vol 42 (1) ◽  
pp. 42-47 ◽  
Author(s):  
K. Matsuuchi ◽  
T. Miwa ◽  
T. Nomura ◽  
J. Sakakibara ◽  
H. Shintani ◽  
...  

2011 ◽  
Vol 2-3 ◽  
pp. 117-122 ◽  
Author(s):  
Peng Peng Qian ◽  
Jin Guo Liu ◽  
Wei Zhang ◽  
Ying Zi Wei

Wavelet analysis with its unique features is very suitable for analyzing non-stationary signal, and it can also be used as an ideal tool for signal processing in fault diagnosis. The characteristics of the faults and the necessary information on the diagnosis can be constructed and extracted respectively by wavelet analysis. Though wavelet analysis is specialized in characteristics extraction, it can not determine the fault type. So this paper has proposed an energy analysis method based on wavelet transform. Experiment results show the method is very effective for sensor fault diagnosis, because it can not only detect the sensor faults, but also determine the fault type.


Sign in / Sign up

Export Citation Format

Share Document