Preparation and Electrochemical Performance of Praseodymium Doped SnO2 Particles as Negative Electrode Material of Lithium-Ion Battery

2014 ◽  
Vol 492 ◽  
pp. 370-374
Author(s):  
Xiao Zhen Liu ◽  
Guang Jian Lu ◽  
Xiao Zhou Liu ◽  
Jie Chen ◽  
Han Zhang Xiao

Pr doped SnO2 particles as negative electrode material of lithium-ion battery are synthesized by the coprecipitation method with SnCl4·5H2O and Pr2O3 as raw materials. The structure of the SnO2 particles and Pr doped SnO2 particles are investigated respectively by XRD analysis. Doping is achieved well by coprecipitation method and is recognized as replacement doping or caulking doping. Electrochemical properties of the SnO2 particles and Pr doped SnO2 particles are tested by charge-discharge and cycle voltammogram experimentation, respectively. The initial specific discharge capacity of Pr doped SnO2 the negative electrode materials is 676.3mAh/g. After 20 cycles, the capacity retention ratio is 90.5%. The reversible capacity of Pr doped SnO2 negative electrode material higher than the reversible capacity of SnO2 negative electrode material. Pr doped SnO2 particles has good lithiumion intercalation/deintercalation performance.

2015 ◽  
Vol 83 (10) ◽  
pp. 834-836 ◽  
Author(s):  
Hideaki NAGAI ◽  
Kunimitsu KATAOKA ◽  
Junji AKIMOTO ◽  
Tomoyuki SOTOKAWA ◽  
Yoshimasa KUMASHIRO

2016 ◽  
Vol 835 ◽  
pp. 126-130 ◽  
Author(s):  
Kyoung Soo Park ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

The electrochemical properties of niobium monoxide, NbO, were investigated as a negative electrode material for lithium-ion batteries. Lithium ions were inserted into and extracted from NbO material at potentials < 1.0 V versus Li/Li+, involving formation of a solid electrolyte interface (SEI) on the NbO surface in the first cycle. Its reversible capacity is ~67 mAh g–1 with the capacity retention of ~109% after 50 cycles. The magnitude of charge transfer resistance was greatly decreased by ball-milling the pristine NbO, whereas the ball-milling had no effect on the SEI resistance.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 48620-48629 ◽  
Author(s):  
Tsan-Yao Chen ◽  
Yu-Ting Liu ◽  
Ping-Ching Wu ◽  
Chih-Wei Hu ◽  
Po-Wei Yang ◽  
...  

Sn dopants undergo restructuring into Ti sites of TiO2 upon lithiation reaction. These Sn dopants attract Li to form local SnLix alloys, which sufficiently increase the capacity of Sn-substituted TiO2 as a negative electrode material.


2011 ◽  
Vol 197-198 ◽  
pp. 1113-1116 ◽  
Author(s):  
Wen Li Yao ◽  
Jin Qing Chen ◽  
An Yun Li ◽  
Xin Bing Chen

The platelike Co3O4/carbon nanofiber (CNF) composite materials were synthesized by the calcination of β-Co(OH)2/CNF precursor prepared by a surfactant-free hydrothermal method. As negative electrode materials for lithium-ion batteries, the platelike Co3O4/CNF composites can deliver a high reversible capacity of 900 mAh g-1 for a life extending over hundreds of cycles at a current density of 100 mA g-1. The high Li-storage capacity and excellent cycling performance for Co3O4/CNF composite materials may mainly attribute to the beneficial effect of the CNFs addition on enhancing structural stability and electrical conductivity of Co3O4 platelets.


Sign in / Sign up

Export Citation Format

Share Document