Bayesian Networks in Electric Reliability Assessment of Doubly-Fed Wind Turbine Generator

2014 ◽  
Vol 494-495 ◽  
pp. 1791-1794 ◽  
Author(s):  
Hai Ning Pan ◽  
Ming Qin ◽  
Jun Zhang ◽  
Chao Chang ◽  
Pan Lei

For the development of large wind turbines, the approach of trial and error is also not adequate for mass produced wind turbines, a reliability-concerned manufacturing must be involved for the future development. An approach which introduces probabilistic reliability assessment which incorporates reliability methods into wind turbine engineering is described. Fault Tree of wind turbine generators electrical components is firstly built. Then it is transformed to the Bayesian network and probabilistic distribution is preceded using Markov chain Monte Carlo inference. Finally a set of qualitative and quantitative reliability is given according to a specific probabilistic input.

Author(s):  
N. Goudarzi ◽  
W. D. Zhu

Wind power as a source of green and abundant energy has acquired a great momentum across the world and is proposed as one of the main new world power sources. In the last few decades, wind turbines with different generators have been developed to increase the maximum power capture, minimize the costs, and expand the use of the wind turbines in both onshore and offshore applications. This paper studies the development of different types of wind turbine generator technologies and discusses the advantages and disadvantages of each type. In addition, a comparison of different generator designs based on the technical data and market trends is provided. To better understand the development of generator concepts on the market, the market trends of current large generators with a capacity of 2.5 MW and above across the world are evaluated.


2014 ◽  
Vol 889-890 ◽  
pp. 537-541
Author(s):  
Cheng Zhi Zeng ◽  
De Yao Tang ◽  
Yi Gao

In order to lower down the fault rate of bearings and gears, tighten up the mechanical components safety and lengthen their lifetime, a new design method [ has occurred by matching bearings with gears. Whereas, this methodology is based on the simple transmission system, and it seems not applicable in more complicated transmission systems, such as gearboxes in doubly-fed wind turbine generators, which really need to be further studied, and thats where the topic of this article lies. By doing research on the bearing-gear matching design of planetary gear system in gearbox of wind turbine generator, equations are worked out. Succeedingly, by verifying the data from simulating experiments and on-site cases, it turns out that the spectrum characteristics of those two kinds of data match with each other correctly, and as a consequence, the new matching design is thus proved to be available.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 447 ◽  
Author(s):  
Reza Zeinali ◽  
Ozan Keysan

A novel Vernier type magnetically geared direct-drive generator for large wind turbines is introduced in this paper. Conventional Vernier-type machines and most of the direct-drive wind turbine generators use excessive amount of permanent magnet, which increases the overall cost and makes the manufacturing process challenging. In this paper, an electrically excited (PM_less) claw-pole type Vernier machine is presented. This new topology has the potential of reducing mass and cost of the generator, and can make the construction easy in manufacturing and handling. Analytical designs are verified using 3D finite-element simulations and several designs are evaluated to find the optimum design for a 7.5 MW, 12 rpm wind turbine application. It is shown, that the required torque can be achieved with an outer diameter of 7.5 m, and with a mass of 172 t (including the structural mass). The proposed generator is compared with commercial direct-drive generators, and it is found that the proposed generator has the highest torque density with 34.7 kNm/t.


1983 ◽  
Vol 21 (1) ◽  
pp. 30 ◽  
Author(s):  
Kevin P. Shepherd ◽  
Ferdinand W. Grosveld ◽  
David G. Stephens

Solar Energy ◽  
2003 ◽  
Author(s):  
G. R. Bhagwatikar ◽  
W. Z. Gandhare

It is well known that the wind power has definitely certain impact on the grid power. Issues associated with the integration of wind power into the utility grid are interface issues, operational issues and planning issues. Interface issues include harmonics, reactive power consumption, voltage regulation and frequency control. Operational issues are intermittent power generation, operating reserve requirements, unit commitment and economic despatch. And planning issues are concerned with intermittent wind resources compared to conventional power resources. An important question, when connecting the wind turbine generators to the utility grid, is how much the power / voltage quality will be influenced, since the power production by wind turbines is intermittent, quantity wise as well as quality wise. This paper is focused on the on comparison between the constant speed wind turbines and variable speed wind turbines, reactive power consumption and harmonics generated by both wind turbines. Total harmonic distortion is calculated by the application of C++ software and a comparison is done between the generators with respect to the harmonics. It is observed that constant speed wind turbine generates low order harmonics and variable speed turbine generates high order harmonics. On the basis of results, some solutions are suggested to improve the wind power quality and to reduce reactive power consumption. It seems that variable speed wind turbines with electronic interface are better with respect to the utility grid point of view.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mingzhu Tang ◽  
Yutao Chen ◽  
Huawei Wu ◽  
Qi Zhao ◽  
Wen Long ◽  
...  

The number of normal samples of wind turbine generators is much larger than the number of fault samples. To solve the problem of imbalanced classification in wind turbine generator fault detection, a cost-sensitive extremely randomized trees (CS-ERT) algorithm is proposed in this paper, in which the cost-sensitive learning method is introduced into an extremely randomized trees (ERT) algorithm. Based on the classification misclassification cost and class distribution, the misclassification cost gain (MCG) is proposed as the score measure of the CS-ERT model growth process to improve the classification accuracy of minority classes. The Hilbert-Schmidt independence criterion lasso (HSICLasso) feature selection method is used to select strongly correlated non-redundant features of doubly-fed wind turbine generators. The effectiveness of the method was verified by experiments on four different failure datasets of wind turbine generators. The experiment results show that average missing detection rate, average misclassification cost and gMean of the improved algorithm better than those of the ERT algorithm. In addition, compared with the CSForest, AdaCost and MetaCost methods, the proposed method has better real-time fault detection performance.


1982 ◽  
Author(s):  
D.L. Elliott ◽  
L.L. Wendell ◽  
S.K. Heflick

Author(s):  
Michael Kirschneck ◽  
Daniel J. Rixen ◽  
Henk Polinder ◽  
Ron A. J. van Ostayen

In large direct-drive off-shore wind turbine generators one challenge is to engineer the system to function securely with an air gap length of about a thousandth of the outer rotor diameter. Compared to the large diameter of the generator rotor, the rolling element bearings can only be constructed with a relatively limited size. This makes it challenging to design appropriate constructions able to transmit the large applied magnetic forces encountered in the air gap of direct drive wind turbine generators. Currently, this challenge is met by designing stiff heavy rotors that are able to withstand the forces in the air gap. Incorporating flexibility into the design of the rotor structure can lead to a lighter less expensive rotor. In order to be able to do this the magnetomechanical coupling in the air gap and its effect on the structural dynamics need to be taken into account when predicting the intended flexibility. This paper introduces an approach for a multiphysical modal analysis that makes it possible to predict the dynamics of the strongly coupled magnetomechanical system. The new method is validated using measurements of a simple lab setup. It is then applied to a single-bearing design direct-drive wind turbine generator rotor to calculate the changes of the structural dynamics caused by the electromagnetomechanical coupling.


Sign in / Sign up

Export Citation Format

Share Document