A Review of the Development of Wind Turbine Generators Across the World

Author(s):  
N. Goudarzi ◽  
W. D. Zhu

Wind power as a source of green and abundant energy has acquired a great momentum across the world and is proposed as one of the main new world power sources. In the last few decades, wind turbines with different generators have been developed to increase the maximum power capture, minimize the costs, and expand the use of the wind turbines in both onshore and offshore applications. This paper studies the development of different types of wind turbine generator technologies and discusses the advantages and disadvantages of each type. In addition, a comparison of different generator designs based on the technical data and market trends is provided. To better understand the development of generator concepts on the market, the market trends of current large generators with a capacity of 2.5 MW and above across the world are evaluated.

2014 ◽  
Vol 494-495 ◽  
pp. 1791-1794 ◽  
Author(s):  
Hai Ning Pan ◽  
Ming Qin ◽  
Jun Zhang ◽  
Chao Chang ◽  
Pan Lei

For the development of large wind turbines, the approach of trial and error is also not adequate for mass produced wind turbines, a reliability-concerned manufacturing must be involved for the future development. An approach which introduces probabilistic reliability assessment which incorporates reliability methods into wind turbine engineering is described. Fault Tree of wind turbine generators electrical components is firstly built. Then it is transformed to the Bayesian network and probabilistic distribution is preceded using Markov chain Monte Carlo inference. Finally a set of qualitative and quantitative reliability is given according to a specific probabilistic input.


Solar Energy ◽  
2003 ◽  
Author(s):  
G. R. Bhagwatikar ◽  
W. Z. Gandhare

It is well known that the wind power has definitely certain impact on the grid power. Issues associated with the integration of wind power into the utility grid are interface issues, operational issues and planning issues. Interface issues include harmonics, reactive power consumption, voltage regulation and frequency control. Operational issues are intermittent power generation, operating reserve requirements, unit commitment and economic despatch. And planning issues are concerned with intermittent wind resources compared to conventional power resources. An important question, when connecting the wind turbine generators to the utility grid, is how much the power / voltage quality will be influenced, since the power production by wind turbines is intermittent, quantity wise as well as quality wise. This paper is focused on the on comparison between the constant speed wind turbines and variable speed wind turbines, reactive power consumption and harmonics generated by both wind turbines. Total harmonic distortion is calculated by the application of C++ software and a comparison is done between the generators with respect to the harmonics. It is observed that constant speed wind turbine generates low order harmonics and variable speed turbine generates high order harmonics. On the basis of results, some solutions are suggested to improve the wind power quality and to reduce reactive power consumption. It seems that variable speed wind turbines with electronic interface are better with respect to the utility grid point of view.


Author(s):  
Michael Kirschneck ◽  
Daniel J. Rixen ◽  
Henk Polinder ◽  
Ron A. J. van Ostayen

In large direct-drive off-shore wind turbine generators one challenge is to engineer the system to function securely with an air gap length of about a thousandth of the outer rotor diameter. Compared to the large diameter of the generator rotor, the rolling element bearings can only be constructed with a relatively limited size. This makes it challenging to design appropriate constructions able to transmit the large applied magnetic forces encountered in the air gap of direct drive wind turbine generators. Currently, this challenge is met by designing stiff heavy rotors that are able to withstand the forces in the air gap. Incorporating flexibility into the design of the rotor structure can lead to a lighter less expensive rotor. In order to be able to do this the magnetomechanical coupling in the air gap and its effect on the structural dynamics need to be taken into account when predicting the intended flexibility. This paper introduces an approach for a multiphysical modal analysis that makes it possible to predict the dynamics of the strongly coupled magnetomechanical system. The new method is validated using measurements of a simple lab setup. It is then applied to a single-bearing design direct-drive wind turbine generator rotor to calculate the changes of the structural dynamics caused by the electromagnetomechanical coupling.


1980 ◽  
Vol 102 (1) ◽  
pp. 14-18
Author(s):  
H. Sambar ◽  
V. Pavelic ◽  
R. J. Warner

This project is a part of an overall study aimed at producing a new generation of wind turbine generators. The wind turbine generator proposed is a horizontal axis machine with three blades operating downwind. A hydraulic system actuates mechanical linkages to control blade pitch during operation. The blade pitch control concept provides active control of rotor rpm above the rated wind speed and during no load condition. The lowering of blade and tower loads while providing the capability for well tuned rotor control are its primary features. A hydraulic system, designed to control the pitch of the blades of a wind turbine generator, is simulated on the digital computer using the Runge-Kutta method. The control system subroutine is coupled with the aerodynamic subroutines of the blades to represent the model for the wind turbine generator. The response of the simulated wind turbine to a real wind case is shown to agree with the desired response.


2021 ◽  
pp. 0309524X2110463
Author(s):  
Jin Xu ◽  
Xian Ding ◽  
Jiuhua Wang ◽  
Junjie Zheng

Bearings are the critical parts that support the rotating of rotor of wind turbine generators. Due to high speed revolution and affected by potential misalignment between rotor and the high speed shaft in wind turbine gearbox, the fault ratio in wind turbine generator bearings is high. Once the bearings fail, it will cause gap eccentricity, even rub, or sweeping chamber between rotor and stator. Under fault conditions, the vibration signals from rotating machinery exhibits distinct second cyclostationarity. In the light of this, the fast spectral correlation based method is applied to the fault extraction of bearings in wind turbine generators. Through converting conventional correlation into summation algorithm, the computational cost is reduced largely, meanwhile, the diagnosis accuracy is guaranteed. The effectiveness of the method in this paper is verified by two fault cases from on-site wind turbines.


2020 ◽  
pp. 0309524X2094854
Author(s):  
Ashish Sharma ◽  
V Chintala

The interference between wind turbine generators and radar is now being considered as one of the major deterrents towards seeking clearance for new wind energy project. The windfarm developers have to seek clearance from Civil Air Traffic Control and Defence Department certifying that the windfarms will not create interference with radars. The tower of wind turbine generator along with blades presents a large radar cross section to radars, thus creating static clutter; moreover, rotation of wind turbine generator blades creates Doppler ambiguities which confuse radar operators. Many radar designers have proposed mitigation techniques to overcome this issue; however, each technique has its own limitation. The study takes a two-pronged approach to address the issue of wind turbine generator static clutter due to tower and blades and the resolution of Doppler ambiguities through signal processing–based mitigation techniques. In addition, the study also suggests the use of micro-Doppler techniques for signature identification of wind turbine generator blades for eliminating their effect during the radar signal processing. The article presents a step-by-step mitigation technique to resolve the wind turbine generator and radar interference issue.


2020 ◽  
Vol 35 ◽  
pp. 77-93
Author(s):  
Dourodjayé Pierre Aguemon ◽  
Richard Gilles Agbokpanzo ◽  
Frédéric Dubas ◽  
Antoine Vianou ◽  
Didier Chamagne ◽  
...  

Wind energy conversion systems (WECS) have developed rapidly in recent years in terms of capacity and wind turbines design. This development led to improve power quality, to reduce the costs and increase the energy yield. WECS are expected to be reliable, effective and more cost-competitive. A comprehensive analysis and review on electrical machines in WECS (viz., wind turbine generators) has been presented in this paper. Design, (dis) advantages, and market penetration of different wind turbine generators are analyzed and discussed. Some comparisons have been made on the permanent-magnet (PM) synchronous machines, promising generator for future wind turbines, especially offshore wind turbines.


2003 ◽  
Vol 27 (4) ◽  
pp. 257-272 ◽  
Author(s):  
Vladislav Akhmatov

A model of electricity-producing wind turbines, focusing on a detailed representation of the mechanical construction by a simplified aeroelastic code, is implemented in the simulation tool PSS/E. The model is used to investigate the mechanical excitation of the grid-connected wind turbines due to grid faults. The power grid models, of arbitrary complexity, allow an accurate response of the wind turbine generators to the grid fault. This simulates an accurate voltage profile and, hence, the electric torque affecting the mechanical construction through the shaft system. The turbine construction will be excited by the grid fault with torsional oscillations and vibrations in the shaft system. These mechanical responses are compared with the respective oscillations and vibrations occurring in the wind turbine at a safety-stop. The analysis is important because the capacities and physical size of new wind turbines are increasing significantly, so the interaction between the wind turbine mechanical construction and the power grid will affect power stability.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4670
Author(s):  
Emir Omerdic ◽  
Jakub Osmic ◽  
Cathal O’Donnell ◽  
Edin Omerdic

A control algorithm for Parallel Connected Offshore Wind Turbines with permanent magnet synchronous Generators (PCOWTG) is presented in this paper. The algorithm estimates the optimal collective speed of turbines based on the estimated mechanical power of wind turbines without direct measurement of wind speed. In the proposed topology of the wind farm, direct-drive Wind Turbine Generators (WTG) is connected to variable low-frequency AC Collection Grids (ACCG) without the use of individual power converters. The ACCG is connected to a variable low-frequency offshore AC transmission grid using a step-up transformer. In order to achieve optimum wind power extraction, the collective speed of the WTGs is controlled by a single onshore Back to Back converter (B2B). The voltage control system of the B2B converter adjusts voltage by keeping a constant Volt/Hz ratio, ensuring constant magnetic flux of electromagnetic devices regardless of changing system frequency. With the use of PI pitch compensators, wind power extraction for each wind turbine is limited within rated WTG power limits. Lack of load damping in offshore wind parks can result in oscillatory instability of PCOWTG. In this paper, damping torque is increased using P pitch controllers at each WTG that work in parallel with PI pitch compensators.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6807
Author(s):  
Henok Ayele Behabtu ◽  
Thierry Coosemans ◽  
Maitane Berecibar ◽  
Kinde Anlay Fante ◽  
Abraham Alem Kebede ◽  
...  

The risk of oscillation of grid-connected wind turbine generators (WTGs) is well known, making it all the more important to understand the characteristics of different WTGs and analyze their performance so that the problems’ causes are identified and resolved. While many studies have evaluated the performance of grid-connected WTGs, most lack clarity and precision in the modeling and simulation techniques used. Moreover, most of the literature focuses on a single mode of operation of WTGs to analyze their performances. Therefore, this paper updates the literature by considering the different operating conditions for WTGs. Using MATLAB/SIMULINK it expands the evaluation to the full range of vulnerabilities of WTGs: from the wind turbine to grid connection. A network representing grid-connected squirrel-cage induction generator (SCIG) and doubly-fed induction generator (DFIG) wind turbines are selected for simulation. The performances of SCIG and DFIG wind turbines are evaluated in terms of their energy generation capacity during constant rated wind speed, variable wind speed, and ability of fault-ride through during dynamic system transient operating conditions. The simulation results show the performance of DFIG is better than SCIG in terms of its energy generation capacity during variable wind speed conditions and active and reactive power control capability during steady-state and transient operating conditions. As a result, DFIG wind turbine is more suitable for large-scale wind power plants connected to weak utility grid applications than SCIG.


Sign in / Sign up

Export Citation Format

Share Document