Cophase Power Supply Control Technology in the Application of the Electric Traction Locomotive

2014 ◽  
Vol 513-517 ◽  
pp. 3938-3941
Author(s):  
Xin Yu Sun

China's current traction net unilateral power supply mode and the existing traction substation connection and phase change connection determine the existence of stationary phase of traction network. Therefore, the application of modern power electronics and microprocessor control technology and the development of cophase power supply technology with independent intellectual property rights are the way to realize the innovation of traction power supply technology, which will achieve a win-win situation for cophase power and electric power development, it has the vital significance.

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 253
Author(s):  
Si Wu ◽  
Mingli Wu ◽  
Yi Wang

The existing problems of the traction power-supply system (i.e., the existence of the neutral section and the power quality problems) limit the development of railways, especially high-speed railways, which are developing rapidly worldwide. The existence of the neutral section leads to the speed loss and traction loss as well as mechanical failures, all of which threaten the fast and safe operation of the train and the system. Meanwhile, the power quality problems (e.g., the negative sequence current, the reactive power, and the harmonic) can bring a series of problems that cannot be ignored on the three-phase grid side. In response, many researchers have proposed co-phase power-supply schemes to solve these two problems simultaneously. Given that the auto-transformer (AT) power-supply mode has become the main power-supply mode for the high-speed railway traction power-supply system, it has a bright future following the rapid development of the high-speed railway. In addition, there is no co-phase power-supply scheme designed for AT power-supply mode in the existing schemes. Therefore, the main contribution of this paper is to propose a specifically designed power-supply mode more suitable for the AT, as well as to establish the control systems for the rectifier side and the inverter side. In addition, for the proposed scheme, the operation principle is analyzed, the mathematical model is built, and the control system is created, and its functionality is verified by simulation, and its advantages are compared and summarized finally. The result proves that it can meet functional requirements. At the same time, compared with the existing co-phase power-supply scheme, it saves an auto-transformer in terms of topology, reduces the current stress by 10.9% in terms of the current stress of the switching device, and reduces the power loss by 0.25% in terms of the entire system power loss, which will result in a larger amount of electricity being saved. All of this makes it a more suitable co-phase power-supply scheme for the AT power-supply mode.


2015 ◽  
Vol 36 (4) ◽  
pp. 35-42 ◽  
Author(s):  
Valeriy G. Kuznetsov ◽  
Oleg I. Sablin ◽  
Alenka V. Chornaya

Purpose. Monitoring of current state of quantitative indices of regenerative energy in the suburban movement, the analysis of the factors influencing its volumes and improvement the principles of the train regenerative energy accounting on the basis of it. Relevance. Development of effective measures of increase the regeneration efficiency of the electric power in system of electric traction demands comprehensive completeness of information on quantitative indices of regeneration energy volumes at all possible levels of its analysis, in particular on the corresponding sections of RS movement that will allow to establish the influence on the level of regeneration of various factors, such as parameters of traction power supply and the organization of train service. As the existing system of the regenerative energy accounting does not allow to consider the specified factors, development of the principles for increasing the efficiency of the analysis of volumes of return energy to a contact line during regenerative braking on DC rolling stock is the actual direction of researches. Collective monitoring of regeneration energy volumes by specialists of locomotive service, power supply and traffic operating departments will be essentially new approach to definition of real factors and taking effective decisions for increasing of using of regenerative energy. Scientific novelty. It’s offered to consider the influence on quantitative indices of regenerative energy the parameters of traction power supply and the organization (sizes) of traffic service on sections. Practical importance. Increasing the efficiency of the regeneration energy accounting is an important element in drawing up the balance of energy for electric traction system, development of the effective methods for improvement of the conditions of regeneration in it and in estimation of its power indicators in general.


2018 ◽  
Vol 239 ◽  
pp. 01049 ◽  
Author(s):  
Natalia Shurova ◽  
Valerii Li

In the past few years, there has been a trend towards an increase in the volume of transportation by railway. At the same time, the load on the railway infrastructure increases, in particular, on the traction power supply system. It is necessary to solve the problem of increasing the energy efficiency of the external electric power supply system in the conditions of growing freight turnover and taking into account the uncertainty of the initial data. The paper considers one of the methods of strengthening the traction power supply system. Based on the results of the study, an algorithm was developed for selecting the installation sites and power of compensating devices in a traction network in the conditions of increasing freight turnover and under the condition of increasing the energy efficiency of the external power supply system of traction substations due to unloading of supply lines by reactive power and leveling the load in phases. This methodology includes predicting power consumption, determining the installation sites and power of compensating devices in the traction network under condition of uncertainty of the initial data, and then assessing the energy efficiency of the decision made. A calculation was carried out for the proposed algorithm for a section of the Far Eastern Railway which includes nine traction substations.


2014 ◽  
Vol 1006-1007 ◽  
pp. 955-961
Author(s):  
Xing Wang Li ◽  
Ju Rui Yang

Continuous co-phase traction power supply system is the major change of the traction power supply. It is important to analyze the transient response characteristics of overhead contact line for the traction substation feeder protection. This article introduces the main structure of continuous co-phase traction power supply system and the control strategy of traction substation. Meanwhile, transient responses of overhead contact line in the earth short circuit are studied, including metallic earth short circuit and non-metallic earth short circuit (high resistance ground). In the PSCAD/EMTDC electromagnetic transient simulation environment, the effects on the system and the recovery process are studied which the fault occurred in the output interface of traction substation and occurred in overhead contact line.


2015 ◽  
Vol 35 (3) ◽  
pp. 63-70 ◽  
Author(s):  
Viktor G. Sychenko ◽  
Dmitry O. Bosiy ◽  
Eugene M. Kosarev

Purpose of the work is improved approaches to ensure the required quality parameters of voltage in the traction network based on modern technologies and equipment in the application of power distribution system. Actuality. The introduction of high-speed traffic, increase weight standards Train necessitates increasing the carrying capacity of railways. Often the carrying capacity of existing sections electrified at 3.0 kV DC power supply unit limits. Such limitations include voltage decrease on the electric current collector below the allowable value for the normal operation of 2700 (2900 for high-speed V) and heating the contact wires, thereby losing their mechanical strength. Existing power supply system of RS, which have considerable installed traction substations, can not provide the required level of power density traction network for high-speed movement within 1.5 - 2 MW / km and, respectively, the required voltage quality. At the same time, the daily loading of a powerful traction substations in providing intensive schedule of trains does not exceed 20-25%, while the energy loss in traction network peak load increases and reaches 10-15% of the energy consumed. Thus, the existing system of power traction networks is not sufficiently effective and economical, even with the application of existing methods to strengthen them. In our view, the main limiting factor for a given quality of voltage in the traction network is the use of centralized power. From this, the development of measures to improve the quality of voltage in the traction network in the implementation of high-speed traffic in a growing scarcity of energy resources is an urgent task. Scientific novelty. Using distributed power supply system with adjustable supply points combined into intelligent power supply, which enables adaptive change the characteristics of the transfer, conversion and consumption and optimize the mode of functioning of the traction power supply is suggested for improving the quality of voltage in the traction network in the implementation of high-speed and heavy traffic. Practical significance. Improving the quality of voltage in the traction network by using the proposed circuit design traction power supply will ensure the desired mode voltage and power characteristics of the traction network in the implementation of high-speed and heavy traffic while reducing electricity losses by 20-30%.


2019 ◽  
Vol 1 (1) ◽  
pp. 37-42
Author(s):  
Konrad Krzysztoszek

The article presents a mathematical model of electric traction vehicle movement in a given power supply area. Starting from the presentation of the basic features of the 3 kV DC traction power supply system used in Poland, the author presents a simulation model of electric traction vehicles movement, which allows to determine the mobility and current - voltage possibilities on a selected railway line. The obtained simulation results fully confirm the possibility of using the model as an aid in the design, modernization or diagnostics of existing railway lines and train traffic.


Sign in / Sign up

Export Citation Format

Share Document