Short-Term Traffic Flow Forecasting of Road Based on Spline Weight Function Neural Networks

2014 ◽  
Vol 513-517 ◽  
pp. 695-698
Author(s):  
Dai Yuan Zhang ◽  
Jian Hui Zhan

Traditional short-term traffic flow forecasting of road usually based on back propagation neural network, which has a low prediction accuracy and convergence speed. This paper introduces a spline weight function neural networks which has a feature that the weight function can well reflect sample information after training, thus propose a short-term traffic flow forecasting method base on the spline weight function neural network, specify the network learning algorithm, and make a comparative tests bases on the actual data. The result proves that in short-term traffic flow forecasting, the spline weight function neural network is more effective than traditional methods.

Author(s):  
T. Zh. Mazakov ◽  
D. N. Narynbekovna

Now a day’s security is a big issue, the whole world has been working on the face recognition techniques as face is used for the extraction of facial features. An analysis has been done of the commonly used face recognition techniques. This paper presents a system for the recognition of face for identification and verification purposes by using Principal Component Analysis (PCA) with Back Propagation Neural Networks (BPNN) and the implementation of face recognition system is done by using neural network. The use of neural network is to produce an output pattern from input pattern. This system for facial recognition is implemented in MATLAB using neural networks toolbox. Back propagation Neural Network is multi-layered network in which weights are fixed but adjustment of weights can be done on the basis of sigmoidal function. This algorithm is a learning algorithm to train input and output data set. It also calculates how the error changes when weights are increased or decreased. This paper consists of background and future perspective of face recognition techniques and how these techniques can be improved.


2019 ◽  
Vol 15 (10) ◽  
pp. 155014771988313 ◽  
Author(s):  
Chi Hua ◽  
Erxi Zhu ◽  
Liang Kuang ◽  
Dechang Pi

Accurate prediction of the generation capacity of photovoltaic systems is fundamental to ensuring the stability of the grid and to performing scheduling arrangements correctly. In view of the temporal defect and the local minimum problem of back-propagation neural network, a forecasting method of power generation based on long short-term memory-back-propagation is proposed. On this basis, the traditional prediction data set is improved. According to the three traditional methods listed in this article, we propose a fourth method to improve the traditional photovoltaic power station short-term power generation prediction. Compared with the traditional method, the long short-term memory-back-propagation neural network based on the improved data set has a lower prediction error. At the same time, a horizontal comparison with the multiple linear regression and the support vector machine shows that the long short-term memory-back-propagation method has several advantages. Based on the long short-term memory-back-propagation neural network, the short-term forecasting method proposed in this article for generating capacity of photovoltaic power stations will provide a basis for dispatching plan and optimizing operation of power grid.


2021 ◽  
pp. 2150212
Author(s):  
Wenjun Li ◽  
Si Chen ◽  
Xiaoquan Wang ◽  
Chaoying Yin ◽  
Zhaoguo Huang

Short-term traffic flow forecasting is a key component of intelligent transportation system, yet difficult to be forecasted reliably, and accurately. A novel hybrid forecasting model is proposed by combining three predictors, namely, the autoregressive integrated moving average (ARIMA), back propagation neural network (BPNN) and support vector regression (SVR). First, it is assumed that all previous intervals can have influence on the predicted interval and then the entropy-based gray relation analysis method is applied to analyze the correlation and determine the length of time constrain window. Second, an improved Euclidean distance is employed to identify the similarity. Furthermore, the rank-exponent method is utilized to rank the results according to the similarity and fuse the predicted values of the predictors. Finally, a numerical experiment is implemented, which indicates that the performance of forecasting results is superior to the conventional ones.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 421 ◽  
Author(s):  
Shangyu Sun ◽  
Huayi Wu ◽  
Longgang Xiang

City-wide traffic flow forecasting is a significant function of the Intelligent Transport System (ITS), which plays an important role in city traffic management and public travel safety. However, this remains a very challenging task that is affected by many complex factors, such as road network distribution and external factors (e.g., weather, accidents, and holidays). In this paper, we propose a deep-learning-based multi-branch model called TFFNet (Traffic Flow Forecasting Network) to forecast the short-term traffic status (flow) throughout a city. The model uses spatiotemporal traffic flow matrices and external factors as its input and then infers and outputs the future short-term traffic status (flow) of the whole road network. For modelling the spatial correlations of the traffic flows between current and adjacent road segments, we employ a multi-layer fully convolutional framework to perform cross-correlation calculation and extract the hierarchical spatial dependencies from local to global scales. Also, we extract the temporal closeness and periodicity of traffic flow from historical observations by constructing a high-dimensional tensor comprised of traffic flow matrices from three fragments of the time axis: recent time, near history, and distant history. External factors are also considered and trained with a fully connected neural network and then fused with the output of the main component of TFFNet. The multi-branch model is automatically trained to fit complex patterns hidden in the traffic flow matrices until reaching pre-defined convergent criteria via the back-propagation method. By constructing a rational model input and network architecture, TFFNet can capture spatial and temporal dependencies simultaneously from traffic flow matrices during model training and outperforms other typical traffic flow forecasting methods in the experimental dataset.


Sign in / Sign up

Export Citation Format

Share Document