The Influence of NaOH Concentration on the Performance of ZnO by a Hydrothermal Process

2014 ◽  
Vol 521 ◽  
pp. 563-566
Author(s):  
Zong Hu Xiao ◽  
Shun Jian Xu ◽  
Yong Ping Luo ◽  
Yong Huang ◽  
Wei Zhong ◽  
...  

Zinc oxide (ZnO) with various morphologies have been successfully prepared by a hydrothermal process from zinc acetate (Zn (CH3COO)2) and sodium hydroxide (NaOH) solution. The influence of NaOH concentration on the morphology of ZnO was investigated. And ZnO with various morphologies were applied in dye-sensitized solar cells (DSCs) as the photoelectrodes. Results show that thec-axis preferred growth of ZnO is becoming increasingly obvious with the increase of NaOH concentration. There are a lof of differences in the photovoltaic performances of DSCs, which are based on ZnO with various morphologies as the photoelectrodes. DSC consisted of ZnO nanoparticles has optimal performances, the corresponding short circuit photocurrent density (Jsc), open circuit voltage (Voc), fill factor (FF) and photoelectric conversion efficiency (η) are 3.97 mA/cm2, 0.653 V,0.59 and 1.52 %, respectively.

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Yanzhen Yang ◽  
Renjie Sun ◽  
Chengwu Shi ◽  
Yucheng Wu ◽  
Mei Xia

N-(2-hydroxyethyl)ethylenediaminium iodides (HEEDAIs) and N-(2-hydroxyethyl)piperazinium iodides (HEPIs) were synthesized, and their thermal properties were analysed. The influence of HEEDAI and HEPI onI3-/I-redox behavior in binary ionic liquid was investigated. The result revealed that HEEDAI can suppress the recombination betweenI3-and the injected electrons in TiO2conduction band and be used as the alternative of 4-tert-butylpyridine in the electrolyte of dye-sensitized solar cells. The electrolyte C, 0.15 mol⋅L−1I2, HEEDAI and MPII with mass ratio of 1 : 4, gave the short-circuit photocurrent density of 9.36 mA⋅cm−2, open-circuit photovoltage of 0.67 V, fill factor of 0.52, and the corresponding photoelectric conversion efficiency of 3.24% at the illumination (air mass 1.5, 100 mW⋅cm−2, active area 0.25 cm2).


2012 ◽  
Vol 519 ◽  
pp. 70-73
Author(s):  
Yan Xiang Wang ◽  
Sun Jian ◽  
Bing Xin Zhao

The influences of ZnO photoanode structure on the properties of ZnO dye-sensitized solar cell were studied in this paper. Four kinds of ZnO photoanode films prepared from ZnO nanopowders, nanorods, nanosheets and aggregates were investigated. Their photovoltaic parameters were discussed and compared. ZnO cell consisted of ZnO aggregates had optimal properties, photoelectric conversion efficiency, open circuit voltage, short-circuit current and the fill factor of ZnO aggregates cells were 2.15%, 0.64V, 6.47mA•cm-2 and 0.52, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 1545-1548
Author(s):  
Yan Xiang Wang ◽  
Bing Xin Zhao ◽  
Jian Sun

In this paper, pure ZnO nanospheres and IO3- ions doped ZnO nanospheres were prepared by heating under reflux with zinc acetate and diethylene glycol as raw materials, and the ZnO dye-sensitized solar cells (DSCs) were prepared. The influences of reaction time and IO3--ions dope on ZnO properties were studied. DSCs properties prepared with obtained ZnO nanospheres were investied. ZnO nanospheres were characterized by XRD, SEM and infrared absorption spectrogram. The results showed that when the temperature was 160°C, ZnO nanospheres with diameter 100-800nm were obtained. When reaction time was 2h, ZnO diameter was about 500nm. When the reaction time was 24h, the diameter of ZnO was about 800nm with wider distribution. The ZnO DSCs were prepared by using ZnO nanopowders with different reaction time as photoanode. The photoelectric conversion efficiency of 24h-ZnO DSCs was the highest. The photoelectric conversion efficiency, open circuit voltage, short-circuit current and fill factor were 2.15%, 0.64V, 6.47 mA•cm-2, 0.52, respectively.


2018 ◽  
Vol 382 ◽  
pp. 369-373
Author(s):  
Usana Mahanitipong ◽  
Preeyapat Prompan ◽  
Rukkiat Jitchati

The four thiocyanate free ruthenium(II) complexes; [Ru(N^N)2(C^N)]PF6were synthesized and characterized for dye sensitized solar cells (DSSCs). The results showed that the broad absorptions covered the visible region from metal to ligand charge transfer (MLCT) were obtained with the main peaks at 560, 490 and 400 nm. The materials were studied DSSC performance under standard AM 1.5. Compound PP1 showed the power conversion efficiency (PCE) at 3.10%, with a short-circuit photocurrent density (Jsc) of 7.99 mA cm-2, an open-circuit photovoltage (Voc) of 563 mV and a high fill factor (ff) of 0.690.


2012 ◽  
Vol 90 (12) ◽  
pp. 1048-1055
Author(s):  
Honghan Fei ◽  
Xiaojuan Fan ◽  
David L. Rogow ◽  
Scott R.J. Oliver

We report an inexpensive method using solvent-swollen poly(methyl methacrylate) as a sacrificial template for mesoporous titanium oxide thin films with tunable meso/nano morphology. The conversion efficiency reaches 4.2% despite using a solid-state electrolyte, which circumvents the longevity issues of liquid electrolytes. The cells show a large short-circuit photocurrent density of 7.98 mA, open-circuit voltage of 0.78 V, and maximum conversion efficiency of 4.2% under air-mass 1.5 global illumination. At higher titania precursor ratios, nanodisk particles are formed that increase light scattering and double the efficiency over our previous reports. The tunability of the semiconductor morphology and all solid-state nature of the cells makes the method a viable alternative to existing solar cell technology.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Joe Otsuki ◽  
Yusho Takaguchi ◽  
Daichi Takahashi ◽  
Palanisamy Kalimuthu ◽  
Surya Prakash Singh ◽  
...  

We have prepared a novel piperidine-donor-substituted perylene sensitizer, PK0002, and studied the photovoltaic performance in dye-sensitized solar cells (DSSCs). Physical properties and photovoltaic performance of this new perylene derivative PK0002 are reported and compared with those of unsubstituted perylene sensitizer, PK0003. PK0002, when anchored to nanocrystalline TiO2 films, achieves very efficient sensitization across the whole visible range extending up to 800 nm. The incident photon-to-current conversion efficiency (IPCE) spectrum was consistent with the absorption spectrum and resulted in a high short-circuit photocurrent density (Jsc) of 8.8 mA cm-2. PK0002 showed higher IPCE values than PK0003 in the 520–800 nm region. Under standard AM 1.5 irradiation (100 mW cm-2) and using an electrolyte consisting of 0.6 M dimethylpropyl-imidazolium iodide, 0.05 M I2, 0.1 M LiI, and 0.5 M tert-butylpyridine in acetonitrile, a solar cell containing sensitizer PK0002 yielded a short-circuit photocurrent density of 7.7 mA cm-2, an open-circuit photovoltage of 0.57 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.1%.


2011 ◽  
Vol 347-353 ◽  
pp. 906-911
Author(s):  
Zhi Qiang Hu ◽  
De Feng Huang ◽  
Xian Qing Liu ◽  
Hong Gao ◽  
Hong Shun Hao

Liquid electrolyte for dye-sensitized solar cells (DSSCs) was prepared by using the mixture of sulfolane and 3-methoxypropionitrile as a solvent, 4-tert-butylpyridine as an additive. The influences of sulfolane on electrolyte conductivity, photoelectric performances and the DSSCs stability were investigated. The results indicated that when the ratio of 3-methoxypropionitrile to sulfolane achieves 3:2, the cell showed the optimal photoelectric properties and stability, and the short-circuit current and photoelectric conversion efficiency achieved 7.58mA/cm2 and 2.79%, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Xiaoxu Ji ◽  
Wumei Liu ◽  
Yumin Leng ◽  
Aihua Wang

ZnO nanorod thin films grown on fluorine-doped tin oxide (FTO) glasses have been synthesized via facile thermal evaporation. To optimize the performance of dye-sensitized solar cells (DSSCs), we fabricated ZnO@TiO2core-shell composite by a simple dip-coating method immersed in the mixed solution of Ti(OC4H9) and ethanol. Results of solar cell testing showed that ZnO@TiO2core-shell nanorod thin films on FTO significantly increased open circuit voltage (from 0.47 V to 0.53 V), short circuit current (from 10.78 mA/cm2to 13.98 mA/cm2), and fill factor (from 51% to 55%). The photoelectric conversion efficiency (PEC) increased from 3.3% for bare ZnO DSSCs to 4.85% for ZnO@TiO2core-shell structured DSSCs. This is mainly ascribed to the improvement in light harvesting efficiency, electron transfer, and the effective suppression of charge recombination.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jeum-Jong Kim ◽  
Jeonghun Yoon ◽  
Eun Jung Kim ◽  
Bo Ram Kim ◽  
Yong-Jin Yoon ◽  
...  

Novel ruthenium bipyridyl sensitizer incorporating conjugated benzo[1,9]quinolizino-(acridin-2-yl)vinyl-2,2′-bipyridine ligand [JJ-12] has been synthesized and demonstrated as efficient sensitizer in dye-sensitized solar cells. A mesoporous titania film stained withJJ-12exhibits a remarkable incident monochromatic photon-to-current conversion efficiency of 82%. Under standard AM 1.5 sunlight, the solar cell using a liquid-based electrolyte consisting of 0.6 M 1,2-dimethyl-3-propylimidazolium iodide (DMPII), 0.05 M I2, 0.1 M LiI, and 0.5 Mtert-butylpyridine in acetonitrile exhibits a short-circuit photocurrent density of 16.47 mA/cm2, an open-circuit voltage of 0.71 V, and a fill factor of 0.71, corresponding to an overall conversion efficiency of 8.34 %.


2014 ◽  
Vol 602-603 ◽  
pp. 884-887
Author(s):  
Hui Xia Cao ◽  
Ze Zhou ◽  
Xiao Di Li ◽  
Bo Yu Wang ◽  
Yu Lin Zhang ◽  
...  

In order to improve the photoelectric conversion efficiency of dye-sensitized solar cells (DSSC), the photoanode process conditions were optimized in this work. The effects on photoelectric conversion efficiency of three methods were mainly investigated, including magnetron sputtering barrier layer, printing scattering layer and post-treatment with TiCl4. The microstructure of TiO2thin films was measured by scanning electron microscope (SEM). The results showed that porous photoanode benefited to electronic transmission. The photoelectric conversion efficiency and performance of DSSC were measured by I-V testing instrument. The results indicated that the short circuit current and photoelectric conversion efficiency were improved. Finally, the best result was obtained by combining the three optimal conditions. A high photoelectric conversion efficiency of 7.31% was achieved under illumination of simulated AM 1.5 sunlight (100mW/cm2). Compared to the previous result of 5.48%, the improvement of 33.4% was achieved.


Sign in / Sign up

Export Citation Format

Share Document