maximum conversion efficiency
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6393
Author(s):  
Jessica Barichello ◽  
Luigi Vesce ◽  
Paolo Mariani ◽  
Enrico Leonardi ◽  
Roberto Braglia ◽  
...  

Our world is facing an environmental crisis that is driving scientists to research green and smart solutions in terms of the use of renewable energy sources and low polluting technologies. In this framework, photovoltaic (PV) technology is one of the most worthy of interest. Dye-sensitized solar cells (DSSCs) are innovative PV devices known for their encouraging features of low cost and easy fabrication, good response to diffuse light and colour tunability. All these features make DSSCs technology suitable for being applied to the so-called agrovoltaic field, taking into account their dual role of filtering light and supporting energy needs. In this project, we used 40 DSSC Z-series connected modules with the aim of combining the devices’ high conversion efficiency, transparency and robustness in order to test them in a greenhouse. A maximum conversion efficiency of 3.9% on a 221 cm2 active area was achieved with a transparency in the module’s aperture (312.9 cm2) area of 35%. Moreover, different modules were stressed at two different temperature conditions, 60 °C and 85 °C, and under light soaking at the maximum power point, showing a strong and robust stability for 1000 h. We assembled the fabricated modules to form ten panels to filter the light from the roof of the greenhouse. We carried out panel measurements in outdoor and greenhouse environments in both sunny and cloudy conditions to find clear trends in efficiency behaviour. A maximum panel efficiency in outdoor conditions of 3.83% was obtained in clear and sunny sky conditions.


Author(s):  
Janmejaya Pradhan ◽  
Satya Ranjan Pattanaik

The small signal characteristics of DDR IMPATTs based on GaAs designed to operate at mm-wave window frequencies such as 94, 140, and 220 GHz are presented in this chapter. Both the DC and Small signal performance of the above-mentioned devices are investigated by using a small signal simulation technique developed by the authors. The efficiency, output power and power density of GaAs IMPATT is higher than that of Si IMPATT. Results show that the DDR IMPATTs based on GaAs are most suitable for generation of RF power with maximum conversion efficiency up to 220 GHz. The noise behavior of GaAs IMPATT yield less noise as compared to Si IMPATT.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 183
Author(s):  
Yu-Chen Liu ◽  
Cheng-You Xiao ◽  
Chien-Chun Huang ◽  
Pei-Chin Chi ◽  
Huang-Jen Chiu

In this study, an optimization procedure was proposed for the magnetic component of an integrated transformer applied in a center-tap phase-shifted full-bridge converter. To accommodate high power–density 0demand, a transformer and an output inductor were integrated into a magnetic component to reduce the volume of the magnetic material and the primary and secondary windings of the transformer were wound on the magnetic legs to reduce conduction loss attributable to the alternating-current resistor. With a focus on the integrated transformer applied in a phase-shifted full-bridge converter, circuit operation in each time interval was analyzed, and a design procedure was established for the integrated magnetic component. In addition, the manner in which output inductance was affected by the mutual inductance between the transformer and the output inductor in the integrated transformer during various operation intervals was discussed and, to minimize circuit loss, a design optimization procedure for the magnetic core was proposed. Finally, the integrated transformer was applied in a phase-shifted full-bridge converter to achieve an input voltage of 400 V, an output voltage of 12 V, output power of 1.7 kW, an output frequency of 80 kHz, and a maximum conversion efficiency of 96.7%.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2188
Author(s):  
Pingping Jiang ◽  
Pascal Boulet ◽  
Marie-Christine Record

Two-dimensional MX (M = Ga, In; X = S, Se, Te) homo- and heterostructures are of interest in electronics and optoelectronics. Structural, electronic and optical properties of bulk and layered MX and GaX/InX heterostructures have been investigated comprehensively using density functional theory (DFT) calculations. Based on the quantum theory of atoms in molecules, topological analyses of bond degree (BD), bond length (BL) and bond angle (BA) have been detailed for interpreting interatomic interactions, hence the structure–property relationship. The X–X BD correlates linearly with the ratio of local potential and kinetic energy, and decreases as X goes from S to Te. For van der Waals (vdW) homo- and heterostructures of GaX and InX, a cubic relationship between microscopic interatomic interaction and macroscopic electromagnetic behavior has been established firstly relating to weighted absolute BD summation and static dielectric constant. A decisive role of vdW interaction in layer-dependent properties has been identified. The GaX/InX heterostructures have bandgaps in the range 0.23–1.49 eV, absorption coefficients over 10−5 cm−1 and maximum conversion efficiency over 27%. Under strain, discordant BD evolutions are responsible for the exclusively distributed electrons and holes in sublayers of GaX/InX. Meanwhile, the interlayer BA adjustment with lattice mismatch explains the constraint-free lattice of the vdW heterostructure.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1233
Author(s):  
Mario Wolf ◽  
Alexey Rybakov ◽  
Richard Hinterding ◽  
Armin Feldhoff

Besides the material research in the field of thermoelectrics, the way from a material to a functional thermoelectric (TE) module comes alongside additional challenges. Thus, comprehension and optimization of the properties and the design of a TE module are important tasks. In this work, different geometry optimization strategies to reach maximum power output or maximum conversion efficiency are applied and the resulting performances of various modules and respective materials are analyzed. A Bi2Te3-based module, a half-Heusler-based module, and an oxide-based module are characterized via FEM simulations. By this, a deviation of optimum power output and optimum conversion efficiency in dependence of the diversity of thermoelectric materials is found. Additionally, for all modules, the respective fluxes of entropy and charge as well as the corresponding fluxes of thermal and electrical energy within the thermolegs are shown. The full understanding and enhancement of the performance of a TE module may be further improved.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4662
Author(s):  
Shona M. Duncan ◽  
Malek Alkasrawi ◽  
Raghu Gurram ◽  
Fares Almomani ◽  
Amy E Wiberley-Bradford ◽  
...  

Paper mill sludge (PMS) solids are predominantly comprised of cellulosic fibers and fillers rejected during the pulping or paper making process. Most sludges are dewatered and discharged into landfills or land spread at a cost to the mill; creating large economic and environmental burdens. This lignocellulosic residual stream can be used as a source of sugars for microbial fermentation to renewable chemicals. The aim of this study was to determine the possibility of converting mill sludge to sugars and then fermentation to either isoprene or ethanol. Chemical analysis indicated that the cellulosic fiber composition between 28 to 68% and hemicellulose content ranged from 8.4 to 10.7%. Calcium carbonate concentration in the sludge ranged from 0.4 to 34%. Sludge samples were enzyme hydrolyzed to convert cellulose fibers to glucose, percent conversion ranged from 10.5 to 98%. Calcium carbonate present with the sludge resulted in low hydrolysis rates; washing of sludge with hydrochloric acid to neutralize the calcium carbonate, increased hydrolysis rates by 50 to 88%. The production of isoprene “very low” (190 to 470 nmol) because the isoprene yields were little. Using an industrial yeast strain for fermentation of the sludge sugars obtained from all sludge samples, the maximum conversion efficiency was achieved with productivity ranging from 0.18 to 1.64 g L−1 h−1. Our data demonstrates that PMS can be converted into sugars that can be fermented to renewable chemicals for industry.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1111 ◽  
Author(s):  
Xueguang Yuan ◽  
Xiaoyu Chen ◽  
Xin Yan ◽  
Wei Wei ◽  
Yangan Zhang ◽  
...  

A horizontally aligned GaAs p–i–n nanowire array solar cell is proposed and studied via coupled three-dimensional optoelectronic simulations. Benefiting from light-concentrating and light-trapping properties, the horizontal nanowire array yields a remarkable efficiency of 10.8% with a radius of 90 nm and a period of 5 radius, more than twice that of its thin-film counterpart with the same thickness. To further enhance the absorption, the nanowire array is placed on a low-refractive-index MgF2 substrate and capsulated in SiO2, which enables multiple reflection and reabsorption of light due to the refractive index difference between air/SiO2 and SiO2/MgF2. The absorption-enhancement structure increases the absorption over a broad wavelength range, resulting in a maximum conversion efficiency of 18%, 3.7 times higher than that of the thin-film counterpart, which is 3 times larger in GaAs material volume. This work may pave the way for the development of ultra-thin high-efficiency solar cells with very low material cost.


2019 ◽  
Vol 15 (2) ◽  
pp. 33-39
Author(s):  
Ahmad Salih ◽  
Abdulkareem Abdullah

In this paper, a single-band printed rectenna of size (45×36) mm2 has been designed and analyzed to work at WiFi frequency of 2.4 GHz for wireless power transmission. The antenna part of this rectenna has the shape of question mark patch along with an inverted L-shape resonator and printed on FR4 substrate. The rectifier part of this rectenna is also printed on FR4 substrate and consisted of impedance matching network, AC-to-DC conversion circuit and a DC filter. The design and simulation results of this rectenna have been done with the help of CST 2018 and ADS 2017 software packages. The maximum conversion efficiency obtained by this rectenna is found as 57.141% at an input power of 2 dBm and a load of 900 Ω.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Mohammed Abdelhadi Sarhan

<p>In this paper, ten major physical factors of a commercial silicon solar cell such as maximum current density, maximum voltage, maximum resistance, fill factor, energy conversion efficiency, life time , series and shunt resistances  have been demonstrated. Integer linear programming (ILP) tests these factors of a commercial cell and the obtained results are compared with those of experimental values. The experimental results of the solar cell indicate excellent agreement as compared with those obtained by (ILP). </p>


Sign in / Sign up

Export Citation Format

Share Document