Rotations of 4nπ Research and no Twisted Mechanism Example Analysis Based on the Theory of Braid Group

2014 ◽  
Vol 536-537 ◽  
pp. 1355-1360
Author(s):  
Zhi Yu Fu ◽  
Lu Bin Hang ◽  
Hai Xu ◽  
Jin Cai ◽  
Huai Qiang Bian ◽  
...  

The Cable or Pipe between the Two Relatively Rotating Platforms Exists the Twisted Problem. from Viewpoint of Braid Group Theory, Rope’s Twisted State is Researched on. Based on the Characteristics of a Special Garside Braids Δn and Δnk , the Equivalence of Two Rotation Modes is Revealed. also, that the Determination of Rotation Mode’s Minimum Rotate Range is 4∏ while Using Braid Theory is Proposed. the Theory of Braid Group can Not only be Used as a Criterion for Determine Whether the Cable is Twisted, Finally, but also can be Used as Avoid Cable Twisted during Mechanism Design.

2000 ◽  
Vol 09 (08) ◽  
pp. 1005-1009
Author(s):  
Reinhard Häring-Oldenburg

We recast the braid-lift representation of Contantinescu, Lüdde and Toppan in the language of B-type braid theory. Composing with finite dimensional representations of these braid groups we obtain various sequences of finite dimensional multi-parameter representations.


1972 ◽  
Vol 27 (8-9) ◽  
pp. 1216-1221
Author(s):  
Heinz Kleindienst

Abstract In this paper a simple method for the determination of all antisymmetric terms allowed according to Pauli principle is presented. Using group theory it allows to evaluate the terms for all electronic configurations of the type lr with l≦ 3.


1996 ◽  
Vol 11 (11) ◽  
pp. 899-913 ◽  
Author(s):  
N. FLEURY ◽  
M. RAUSCH DE TRAUBENBERG

A group theory justification of one-dimensional fractional supersymmetry is proposed using an analog of a coset space, just like the one introduced in 1-D supersymmetry. This theory is then gauged to obtain a local fractional supersymmetry, i.e. a fractional supergravity which is then quantized à la Dirac to obtain an equation of motion for a particle which is in a representation of the braid group and should describe alternative statistics. A formulation invariant under general reparametrization is given by means of a curved fractional superline.


2010 ◽  
Vol 10 (4) ◽  
pp. 835-855 ◽  
Author(s):  
Jong-Shenq Guo ◽  
Hiroshi Matano ◽  
Chin-Chin Wu

Respuestas ◽  
2018 ◽  
Vol 23 (1) ◽  
pp. 68
Author(s):  
V. H. Sierra ◽  
C. A. Aguirre ◽  
José José Barba-Ortega

ResumenLa determinación del Hamiltoniano de una molécula o un cristal puede llegar a ser un problema muy complicado; sin embargo, las consideraciones de simetría sobre el problema pueden llegar a simplificarlo de manera sustancial. Razón por la cual, es pertinente buscar el mayor número de simetrías de un cristal. En este punto, se realza la importancia de la teoría de grupos como herramienta de cálculo, pues a través de ésta, se sintetizan todas las propiedades del cristal: las rotaciones, las inversiones y las reflexiones. Empero, el estudio realizado por muchos libros acerca de esta temática es demasiado confuso y complicado para los estudiantes de Licenciatura en Física, debido a la naturaleza abstracta del método de la teoría, y las relaciones que éste tiene con el Hamiltoniano. Lo anterior, motiva la realización de un estudio didáctico, así como detallado de los principios que rigen el uso del método. Además, se ilustra a través de un ejemplo detallado para el caso de un cristal ortorrómbico, procediendo a establecer los isomorfismos entre el álgebra utilizada en la teoría de grupos y la correspondiente representación de matrices, que permita efectuar la reducción del Hamiltoniano y los cálculos correspondientes.Palabras clave: Simetría, Hamiltoniano, Teoría de grupos.AbstractThe determination of the Hamiltonian of a molecule or a crystal can become a very complicated problem. However, considerations of symmetry of the problem may make it simpler. Therefore it is relevant seek the greatest number of symmetries of a crystal. At this point, it highlights the                importance of group theory as a tool for calculation, then, through it synthesizes all of these properties of the crystal, like the rotations, inversions and reflections. However, the study present in many books on this subject is too confusing and complicated for the students of Bachelor in Physics,  because of the abstract nature of theoretical method and the relationship it has with the Hamiltonian. This one motivates the realization of a didactic study, as well as detailed principles governing the use of the method. Also, a detailed example is present for the case of an orthorhombic crystal, proceeding to establish the isomorphism between the algebra used in group theory and the corresponding matrix representation, permitting a reduction in the Hamiltonian and the calculations.Keywords: Symmetry, Hamiltonian, Group TheoryResumoA determinação do Hamiltoniano de uma molécula ou cristal pode se tornar um problema muito complicado; No entanto, considerações de simetria sobre o problema podem simplificá-lo            substancialmente. Pelo que, é pertinente procurar o maior número de simetrias de um cristal. Nesse ponto, enfatiza-se a importância da teoria dos grupos como ferramenta de cálculo, pois através dela todas as propriedades do cristal são sintetizadas: rotações, inversões e reflexões. No entanto, o estudo de muitos livros sobre este assunto é muito confuso e complicado para os estudantes de graduação em Física, por causa da natureza abstrata do método da teoria, e a relação que tem com o  hamiltoniano. O exposto, motiva a realização de um estudo didático, bem como detalha os princípios que regem o uso do método. Além disso, é ilustrada através de um processo detalhado de um cristal ortorrômbico, prosseguir para estabelecer a isomorfismo entre álgebra utilizado na teoria de grupos e a representação correspondente de matrizes, permitindo a redução do exemplo Hamiltoniano e cálculos.Palabras chave: Simetria, hamiltoniana, teoria dos grupos


2015 ◽  
Vol 24 (13) ◽  
pp. 1541005 ◽  
Author(s):  
Denis A. Fedoseev ◽  
Vassily O. Manturov ◽  
Zhiyun Cheng

In this paper, we introduce [Formula: see text]-braids and, more generally, [Formula: see text]-braids for an arbitrary group [Formula: see text]. They form a natural group-theoretic counterpart of [Formula: see text]-knots, see [V. O. Manturov; Reidemeister moves and groups, preprint (2014), arXiv:1412.8691]. The underlying idea used in the construction of these objects — decoration of crossings with some additional information — generalizes an important notion of parity introduced by the second author (see [V. O. Manturov, Parity in knot theory, Sb. Math. 201(5) (2010) 693–733]) to different combinatorically geometric theories, such as knot theory, braid theory and others. These objects act as natural enhancements of classical (Artin) braid groups. The notion of dotted braid group is introduced: classical (Artin) braid groups live inside dotted braid groups as those elements having presentation with no dots on the strands. The paper is concluded by a list of unsolved problems.


2010 ◽  
Vol 19 (05) ◽  
pp. 587-600 ◽  
Author(s):  
ERIC C. ROWELL ◽  
IMRE TUBA

We study the problem of deciding whether or not the image of an irreducible representation of the braid group [Formula: see text] of degree ≤ 5 has finite image if we are only given the eigenvalues of a generator. We provide a partial algorithm that determines when the images are finite or infinite in all but finitely many cases, and use these results to study examples coming from quantum groups. Our technique uses two classification theorems and the computational group theory package GAP.


1970 ◽  
Vol 47 (1) ◽  
pp. 33 ◽  
Author(s):  
Donald J. Darensbourg ◽  
Marcetta Y. Darensbourg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document