Adaptive Tracking Control of Wheeled Mobile Robots

2011 ◽  
Vol 55-57 ◽  
pp. 1195-1199 ◽  
Author(s):  
Min Zuo ◽  
Guang Ping Zeng ◽  
Xu Yan Tu

Trajectory-tracking problem of wheeled mobile robots is investigated. Adaptive control scheme utilized has only one control signal. The control input gives out the velocity increments which will be utilized to adjust the pose of WMR so as to track the desired trajectories. The controller adopted is simple to realize and easy to tune the parameters, which is benefit to real applications. Numerical simulation results show that the control scheme is valid.

2014 ◽  
Vol 78 (3) ◽  
pp. 1811-1826 ◽  
Author(s):  
Mingyue Cui ◽  
Rongjie Huang ◽  
Hongzhao Liu ◽  
Xuyan Liu ◽  
Dihua Sun

2013 ◽  
Vol 373-375 ◽  
pp. 231-237 ◽  
Author(s):  
Qiang Wang ◽  
Guang Tong ◽  
Xin Xing

In this paper, a new robust trajectory tracking control scheme for wheeled mobile robots without velocity measurement is proposed. In the proposed controller, the velocity observer is used to estimate the velocity of wheeled mobile robot. The dynamics of wheeled mobile robot is considered to develop the controller. The proposed controller has the following features: i) The proposed controller has good robustness performance; ii) It is easy to improve tracking performance by setting only one design parameters.


Author(s):  
Jeng-Tze Huang ◽  
Chih-Hao Chang

Backstepping based adaptive tracking control of non-holonomic mobile robots in the presence of both kinematic and dynamic parametric uncertainty is presented. The major challenge is the possible singularity phenomenon due to the approach of zero of the estimated input vector field entering the denominator of the control input, a common drawback of adaptive linearization-based schemes. A hybrid control approach, which switches between an adaptive and a robust control schemes, is developed for solving such a problem. It retains the advantage of an adaptive control approach to a greatest extent while avoiding the possible blowup of the torque inputs simultaneously. A case study on a specific Type (2; 0) mobile robot is provided in the final to verify the usefulness of the proposed design.


Sign in / Sign up

Export Citation Format

Share Document