End Effect Processing for Empirical Mode Decomposition Using Fuzzy Inductive Reasoning

2011 ◽  
Vol 55-57 ◽  
pp. 407-412 ◽  
Author(s):  
Ye Yuan ◽  
Zhong Kai Yang ◽  
Qing Fu Li

This paper focuses on the end effect problem of the empirical mode decomposition (EMD) algorithm, which results in a serious distortion in the EMD sifting process. A new method based on fuzzy inductive reasoning (FIR) is proposed to overcome the end effect. Fuzzy inductive reasoning method has simple inferring rules and strong predictive capability. The fuzzy inductive reasoning based method uses the sequence near the end as the input signal of fuzzy inductive reasoning model. This predictive value can be obtained after fuzzification, qualitative modeling ,qualitative simulation and debluring. The simulation results have shown that the fuzzy inductive reasoning based method has equivalent performance to the neural network based method.

MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 53-64
Author(s):  
Siti Nabilah Syuhada Abdullah ◽  
Ani Shabri ◽  
Ruhaidah Samsudin

Since rice is a staple food in Malaysia, its price fluctuations pose risks to the producers, suppliers and consumers. Hence, an accurate prediction of paddy price is essential to aid the planning and decision-making in related organizations. The artificial neural network (ANN) has been widely used as a promising method for time series forecasting. In this paper, the effectiveness of integrating empirical mode decomposition (EMD) into an ANN model to forecast paddy price is investigated. The hybrid method is applied on a series of monthly paddy prices fromFebruary 1999 up toMay 2018 as recorded in the Malaysian Ringgit (MYR) per metric tons. The performance of the simple ANN model and the EMD-ANN model was measured and compared based on their root mean squared Error (RMSE), mean absolute error (MAE) and mean percentage error (MPE). This study finds that the integration of EMD into the neural network model improves the forecasting capabilities. The use of EMD in the ANN model made the forecast errors reduced significantly, and the RMSE was reduced by 0.012, MAE by 0.0002 and MPE by 0.0448.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


2013 ◽  
Vol 860-863 ◽  
pp. 2791-2795
Author(s):  
Qian Xiao ◽  
Yu Shan Jiang ◽  
Ru Zheng Cui

Aiming at the large calculation workload of adaptive algorithm in adaptive filter based on wavelet transform, affecting the filtering speed, a wavelet-based neural network adaptive filter is constructed in this paper. Since the neural network has the ability of distributed storage and fast self-evolution, use Hopfield neural network to implement adaptive filter LMS algorithm in this filter so as to improve the speed of operation. The simulation results prove that, the new filter can achieve rapid real-time denoising.


Sign in / Sign up

Export Citation Format

Share Document