Optimal Design of Non-Uniform Linear Array Using Genetic Algorithm

2014 ◽  
Vol 556-562 ◽  
pp. 3686-3691
Author(s):  
Wei Bo Deng ◽  
Hong Xin Sun ◽  
Ying Ning Dong ◽  
Qiang Yang

An arrangement method for non-uniform linear array using genetic algorithm (GA) is proposed. It is a general purpose method and needs only the angle range of the signal directions and the desired aperture of the array. It has few parameters, simple processing steps and a strong stabilization. It can be applied to optimize arbitrary array configuration. Modified multiple signal classification (MMUSIC) algorithm is discussed for estimating coherent sources using the non-uniform linear array. Simulation results show that the performance of the direction of arrival (DOA) estimation has been improved effectively on contrast with other array structures, the validity of the proposed method is proved.

2014 ◽  
Vol 490-491 ◽  
pp. 451-455
Author(s):  
Hui Lian Han ◽  
Liang Tian Wan ◽  
Wei Jian Si

In order to estimate the coherent source, a modified multiple signal classification (MUSIC) algorithm is introduced. And a novel arrangement method for the non-uniform linear array by particle swarm optimization (PSO) algorithm is proposed. This method needs merely a signal source whose direction-of-arrival (DOA) has been exactly known. The proposed method has a simple processing and a strong stabilization. It could be applied to optimized arbitrary array configuration. The simulation verifies that the performance of DOA estimation is improved effectively, which has proved the validity of the proposed method.


Author(s):  
Sidi Mohamed Hadj Irid ◽  
Samir Kameche ◽  
Said Assous

<p>In order to improve resolution and direction of arrival (DOA) estimation of two closely spaced sources, in context of array processing, a new algorithm is presented. However, the proposed algorithm combines both spatial sampling technic to widen the resolution and a high resolution method which is the Multiple Signal Classification (MUSIC) to estimate the DOA of two closely spaced sources impinging on the far-field of Uniform Linear Array (ULA). Simulations examples are discussed to demonstrate the performance and the effectiveness of the proposed approach (referred as Spatial sampling MUSIC SS-MUSIC) compared to the classical MUSIC method when it’s used alone in this context.</p>


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5775
Author(s):  
Hyeonjin Chung ◽  
Jeungmin Joo ◽  
Sunwoo Kim

In this paper, an off-grid direction-of-arrival (DoA) estimation algorithm which can work on a non-uniform linear array (NULA) is proposed. The original semidefinite programming (SDP) representation of the atomic norm exploits a summation of one-rank matrices constructed by atoms, where the summation of one-rank matrices equals a Hermitian Toeplitz matrix when using the uniform linear array (ULA). On the other hand, when the antennas in the array are placed arbitrarily, the summation of one-rank matrices is a Hermitian matrix whose diagonal elements are equivalent. Motivated by this property, the proposed algorithm replaces the Hermitian Toeplitz matrix in the original SDP with the constrained Hermitian matrix. Additionally, when the antennas are placed symmetrically, the performance can be enforced by adding extra constraints to the Hermitian matrix. The simulation results show that the proposed algorithm achieves higher estimation accuracy and resolution than other algorithms on both array structures; i.e., the arbitrary array and the symmetric array.


Author(s):  
Ahmed Abdalla ◽  
Suhad Mohammed ◽  
Tang Bin ◽  
Jumma Mary Atieno ◽  
Abdelazeim Abdalla

This paper considers the problem of estimating the direction of arrival (DOA) for the both incoherent and coherent signals from narrowband sources, located in the far field in the case of uniform linear array sensors. Three different methods are analyzed. Specifically, these methods are Music, Root-Music and ESPRIT. The pros and cons of these methods are identified and compared in light of different viewpoints. The performance of the three methods is evaluated, analytically, when possible, and by Matlab simulation. This paper can be a roadmap for beginners in understanding the basic concepts of DOA estimation issues, properties and performance.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 424 ◽  
Author(s):  
Peng Chen ◽  
Zhenxin Cao ◽  
Zhimin Chen ◽  
Linxi Liu ◽  
Man Feng

The performance of a direction-finding system is significantly degraded by the imperfection of an array. In this paper, the direction-of-arrival (DOA) estimation problem is investigated in the uniform linear array (ULA) system with the unknown mutual coupling (MC) effect. The system model with MC effect is formulated. Then, by exploiting the signal sparsity in the spatial domain, a compressed-sensing (CS)-based system model is proposed with the MC coefficients, and the problem of DOA estimation is converted into that of a sparse reconstruction. To solve the reconstruction problem efficiently, a novel DOA estimation method, named sparse-based DOA estimation with unknown MC effect (SDMC), is proposed, where both the sparse signal and the MC coefficients are estimated iteratively. Simulation results show that the proposed method can achieve better performance of DOA estimation in the scenario with MC effect than the state-of-the-art methods, and improve the DOA estimation performance about 31.64 % by reducing the MC effect by about 4 dB.


2013 ◽  
Vol 756-759 ◽  
pp. 3977-3981 ◽  
Author(s):  
Hua Xing Yu ◽  
Xiao Fei Zhang ◽  
Jian Feng Li ◽  
De Ben

In this paper, we address the angle estimation problem in linear array with some ill sensors (partially-well sensors), which only work well randomly. The output of the array will miss some values, and this can be regarded as a low-rank matrix completion problem due to the property that the number of sources is smaller than the number of the total sensors. The output of the array, which is corrupted by the missing values and the noise, can be complete via the Optspace method, and then the angles can be estimated according to the complete output. The proposed algorithm works well for the array with some ill sensors; moreover, it is suitable for non-uniform linear array. Simulation results illustrate performance of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document