scholarly journals Compressed Sensing-Based DOA Estimation with Unknown Mutual Coupling Effect

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 424 ◽  
Author(s):  
Peng Chen ◽  
Zhenxin Cao ◽  
Zhimin Chen ◽  
Linxi Liu ◽  
Man Feng

The performance of a direction-finding system is significantly degraded by the imperfection of an array. In this paper, the direction-of-arrival (DOA) estimation problem is investigated in the uniform linear array (ULA) system with the unknown mutual coupling (MC) effect. The system model with MC effect is formulated. Then, by exploiting the signal sparsity in the spatial domain, a compressed-sensing (CS)-based system model is proposed with the MC coefficients, and the problem of DOA estimation is converted into that of a sparse reconstruction. To solve the reconstruction problem efficiently, a novel DOA estimation method, named sparse-based DOA estimation with unknown MC effect (SDMC), is proposed, where both the sparse signal and the MC coefficients are estimated iteratively. Simulation results show that the proposed method can achieve better performance of DOA estimation in the scenario with MC effect than the state-of-the-art methods, and improve the DOA estimation performance about 31.64 % by reducing the MC effect by about 4 dB.

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 426 ◽  
Author(s):  
Peng Chen  ◽  
Zhimin Chen ◽  
Xuan Zhang ◽  
Linxi Liu

The imperfect array degrades the direction finding performance. In this paper, we investigate the direction finding problem in uniform linear array (ULA) system with unknown mutual coupling effect between antennas. By exploiting the target sparsity in the spatial domain, the sparse Bayesian learning (SBL)-based model is proposed and converts the direction finding problem into a sparse reconstruction problem. In the sparse-based model, the off-grid errors are introduced by discretizing the direction area into grids. Therefore, an off-grid SBL model with mutual coupling vector is proposed to overcome both the mutual coupling and the off-grid effect. With the distribution assumptions of unknown parameters including the noise variance, the off-grid vector, the received signals and the mutual coupling vector, a novel direction finding method based on SBL with unknown mutual coupling effect named DFSMC is proposed, where an expectation-maximum (EM)-based step is adopted by deriving the estimation expressions for all the unknown parameters theoretically. Simulation results show that the proposed DFSMC method can outperform state-of-the-art direction finding methods significantly in the array system with unknown mutual coupling effect.


2015 ◽  
Vol 51 (25) ◽  
pp. 2078-2080 ◽  
Author(s):  
Li Wei ◽  
Wei Shao ◽  
Wangdong Qi ◽  
Jianhua Chen

2021 ◽  
Vol 35 (11) ◽  
pp. 1433-1434
Author(s):  
Sana Khan ◽  
Hassan Sajjad ◽  
Mehmet Ozdemir ◽  
Ercument Arvas

Mutual coupling is compensated in a four element uniform linear receiving array using software defined radios. Direction of arrival (DoA) is estimated in real-time for the array with spacing d=lambda/4. The decoupling matrix was measured using a VNA for only one incident angle. After compensation the error in DoA estimation was reduced to 5%. Comparing the DoA results with d=lambda/2 spaced Uniform Linear Array (ULA), 1.2% error was observed. Although, the experiment was performed indoors with a low SNR, the results show a substantial improvement in the estimated DoA after compensation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Heping Shi ◽  
Wen Leng ◽  
Anguo Wang ◽  
Tongfeng Guo

A novel direction-of-arrival (DOA) estimation method is proposed to cope with the scenario where a number of uncorrelated and coherent narrowband sources simultaneously impinge on the far-field of a uniform linear array (ULA). In the proposed method, the DOAs of uncorrelated sources are firstly estimated by utilizing the property of the moduli of eigenvalues of the DOA matrix. Afterwards, the contributions of uncorrelated sources and the interference of noise are eliminated completely by exploiting the improved spatial differencing technique and only the coherent components remain in the spatial differencing matrix. Finally, the remaining coherent sources can be resolved by performing the improved spatial smoothing scheme on the spatial differencing matrix. The presented method can resolve more number of sources than that of the array elements and distinguish the uncorrelated and coherent sources that come from the same direction as well as improving the estimation performance. Simulation results demonstrate the effectiveness and efficiency of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yang-Yang Dong ◽  
Xin Chang

Although L-shaped array can provide good angle estimation performance and is easy to implement, its two-dimensional (2D) direction-of-arrival (DOA) performance degrades greatly in the presence of mutual coupling. To deal with the mutual coupling effect, a novel 2D DOA estimation method for L-shaped array with low computational complexity is developed in this paper. First, we generalize the conventional mutual coupling model for L-shaped array and compensate the mutual coupling blindly via sacrificing a few sensors as auxiliary elements. Then we apply the propagator method twice to mitigate the effect of strong source signal correlation effect. Finally, the estimations of azimuth and elevation angles are achieved simultaneously without pair matching via the complex eigenvalue technique. Compared with the existing methods, the proposed method is computationally efficient without spectrum search or polynomial rooting and also has fine angle estimation performance for highly correlated source signals. Theoretical analysis and simulation results have demonstrated the effectiveness of the proposed method.


2012 ◽  
Vol 92 (9) ◽  
pp. 2056-2065 ◽  
Author(s):  
Jisheng Dai ◽  
Weichao Xu ◽  
Dean Zhao

2019 ◽  
Vol 90 ◽  
pp. 1-9 ◽  
Author(s):  
Peng Chen ◽  
Zhenxin Cao ◽  
Zhimin Chen ◽  
Chunhua Yu

Sign in / Sign up

Export Citation Format

Share Document