Measurement of Software Structural Properties Based on the Theory of Complex Networks

2014 ◽  
Vol 602-605 ◽  
pp. 2163-2169
Author(s):  
Xiao Lin Zhao ◽  
Xiang Ling Yi Chen ◽  
Chang Zhen Hu ◽  
Yong Wang ◽  
Qing Jun Li

In this paper, we combine the complex network theory and the traditional software structure metrology to propose a new model for the study of the structural characteristics of the software---- Multi-dimensional measurement model of the software structure properties. The multi-dimensional measurement model of the software structure properties is divided into three parts. Each part has their own properties. In this model, the system is abstracted into a network model in the first step. Then we design the metric parameters considering both the complex network theory and the Object-Oriented software research and also give the definition and calculation method of these metric parameters. And on this basis we use the advantages of eclipse and complex network simulation tool pajek to calculate the metrics parameters designed before. Then give explanation to the experimental results which can demonstrate the reliability of the new model, which has also made a solid foundation for the following study of the software structure properties.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jinli Zhao ◽  
Hongshan Zhou ◽  
Bo Chen ◽  
Peng Li

Reasonable and strong structure is an important foundation for the smart transmission grid. For vigorously promoting construction of the smart grid, it is of great significance to have a thorough understanding of the complex structural characteristics of the power grid. The structural characteristics of several actual large-scale power grids of China are studied in this paper based on the complex network theory. Firstly, the topology-based network model of power grid is recalled for analyzing the statistical characteristic parameters. The result demonstrated that although some statistical characteristic parameters could reflect the topological characteristics of power grid from different ways, they have certain limitation in representing the electrical characteristics of power grid. Subsequently, the network model based on the electrical distance is established considering the limitation of topology-based model, which reflects that current and voltage distribution in the power grid are subject to Ohm's Law and Kirchhoff's Law. Comparing with the topology-based model, the electrical distance-based model performs better in reflecting the natural electrical characteristic structure of power grid, especially intuitive and effective in analyzing clustering characteristics and agglomeration characteristics of power grid. These two models could complement each other.


2017 ◽  
Author(s):  
Guannan Liu ◽  
Xiaopeng Pei ◽  
Feng Gao ◽  
Xin Liang ◽  
Jianguo Wang ◽  
...  

Abstract. There are a large number of pores and throats inside the rock, with different magnitude and shape, whose connection is complex[1–3]. Based on the complex network theory, combined with X–ray CT scan and image processing technology, we used sandstone as an example to study the structural characteristics of rock network of different porosities. The experimental results show that the seepage network of sandstone is similar to the BA scale-free network in the structural characteristics. The average path length of sandstone generally increases with the increase of network magnitude. The average of number of edges of node plays a dominant role for the porosity of sandstone. It is inferred that in the large number of pores, few pores with a number of connections have an important role in the overall connectivity of the sandstone seepage network. At the same time, sandstone seepage network has better fault tolerance rate and robustness to external random attacks. The results of this paper may provide a new idea for the study of fluid storage and migration mechanisms in porous materials and the application of complex network theory in interdisciplinary fields.


Author(s):  
Shuang Song ◽  
Dawei Xu ◽  
Shanshan Hu ◽  
Mengxi Shi

Habitat destruction and declining ecosystem service levels caused by urban expansion have led to increased ecological risks in cities, and ecological network optimization has become the main way to resolve this contradiction. Here, we used landscape patterns, meteorological and hydrological data as data sources, applied the complex network theory, landscape ecology, and spatial analysis technology, a quantitative analysis of the current state of landscape pattern characteristics in the central district of Harbin was conducted. The minimum cumulative resistance was used to extract the ecological network of the study area. Optimized the ecological network by edge-adding of the complex network theory, compared the optimizing effects of different edge-adding strategies by using robustness analysis, and put forward an effective way to optimize the ecological network of the study area. The results demonstrate that: The ecological patches of Daowai, Xiangfang, Nangang, and other old districts in the study area are small in size, fewer in number, strongly fragmented, with a single external morphology, and high internal porosity. While the ecological patches in the new districts of Songbei, Hulan, and Acheng have a relatively good foundation. And ecological network connectivity in the study area is generally poor, the ecological corridors are relatively sparse and scattered, the connections between various ecological sources of the corridors are not close. Comparing different edge-adding strategies of complex network theory, the low-degree-first strategy has the most outstanding performance in the robustness test. The low-degree-first strategy was used to optimize the ecological network of the study area, 43 ecological corridors are added. After the optimization, the large and the small ecological corridors are evenly distributed to form a complete network, the optimized ecological network will be significantly more connected, resilient, and resistant to interference, the ecological flow transmission will be more efficient.


2014 ◽  
Vol 13 (5) ◽  
pp. 963
Author(s):  
Burgert A. Senekal ◽  
Karlien Stemmet

The theory of complex systems has gained significant ground in recent years, and with it, complex network theory has become an essential approach to complex systems. This study follows international trends in examining the interlocking South African bank director network using social network analysis (SNA), which is shown to be a highly connected social network that has ties to many South African industries, including healthcare, mining, and education. The most highly connected directors and companies are identified, along with those that are most central to the network, and those that serve important bridging functions in facilitating network coherence. As this study is exploratory, numerous suggestions are also made for further research.


Sign in / Sign up

Export Citation Format

Share Document