Identification of Multi-Input Multi-Output Systems Using Combined Direct and Indirect Methods

2014 ◽  
Vol 625 ◽  
pp. 414-417
Author(s):  
Abdelraheem Faisal ◽  
Marappagounder Ramasamy ◽  
Mahadzir Shuhaimi ◽  
Mohamed Rahim

Successful deployment of cooperative decentralized model predicative control needs reasonably accurate subsystem interactions models. Processes in which open-loop tests are not permitted, closed-loop identification of subsystems interactions is crucial. An approach that combines the direct and indirect methods of closed-loop identification is proposed in this paper. It is shown that full dynamics of MIMO systems can be determined following a two-steps identification procedure. A representative case study is used to demonstrate the efficacy of the proposed approach.

2020 ◽  
Author(s):  
Jatoth Veeranna ◽  
Pawan Jeet

The irregularity in monsoon has severely affected the water availability at surface and sub-surface systems. Diminishing surface and sub-surface availability has not only decreased the water availability, but it additionally affected the ecosystem and increased disastrous situations like floods and droughts, resulting problems of stress on groundwater recharge. Groundwater recharge is a technique by which infiltrated water passes through the unsaturated region of groundwater and joins the water table. It is based upon soil type, land use land cover, geomorphology, geophysical and climate (viz. rainfall, temperature, humidity etc.) characteristics of a region. Over the years, due to variations in weather pattern and overexploitation of aquifers groundwater recharge has decreased and groundwater level has reduced in the most parts of the country. This has led to severe water deficit problems in several parts of the country. This can be solved by different direct and indirect methods of groundwater recharge technology. This technology can reduce the wastage of water and enhance groundwater availability for uses in different sector like irrigation, domestic and industrial uses.


1997 ◽  
Vol 273 (2) ◽  
pp. H1024-H1031 ◽  
Author(s):  
T. Kawada ◽  
M. Sugimachi ◽  
T. Sato ◽  
H. Miyano ◽  
T. Shishido ◽  
...  

In the circulatory system, a change in blood pressure operates through the baroreflex to alter sympathetic efferent nerve activity, which in turn affects blood pressure. Existence of this closed feedback loop makes it difficult to identify the baroreflex open-loop transfer characteristics by means of conventional frequency domain approaches. Although several investigators have demonstrated the advantages of the time domain approach using parametric models such as the autoregressive moving average model, specification of the model structure critically affects their results. Thus we investigated the applicability of a nonparametric closed-loop identification technique to the carotid sinus baroreflex system by using an exogenous perturbation according to a binary white-noise sequence. To validate the identification method, we compared the transfer functions estimated by the closed-loop identification with those estimated by open-loop identification. The transfer functions determined by the two identification methods did not differ statistically in their fitted parameters. We conclude that exogenous perturbation to the baroreflex system enables us to estimate the open-loop baroreflex transfer characteristics under closed-loop conditions.


Author(s):  
Z Ren ◽  
G G Zhu

This paper studies the closed-loop system identification (ID) error when a dynamic integral controller is used. Pseudo-random binary sequence (PRBS) q-Markov covariance equivalent realization (Cover) is used to identify the closed-loop model, and the open-loop model is obtained based upon the identified closed-loop model. Accurate open-loop models were obtained using PRBS q-Markov Cover system ID directly. For closed-loop system ID, accurate open-loop identified models were obtained with a proportional controller, but when a dynamic controller was used, low-frequency system ID error was found. This study suggests that extra caution is required when a dynamic integral controller is used for closed-loop system identification. The closed-loop identification framework also has significant effects on closed-loop identification error. Both first- and second-order examples are provided in this paper.


1996 ◽  
Vol 118 (2) ◽  
pp. 366-372 ◽  
Author(s):  
Min-Hung Hsiao ◽  
Jen-Kuang Huang ◽  
David E. Cox

This paper presents an iterative LQG controller design approach for a linear stochastic system with an uncertain openloop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQG controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.


2015 ◽  
Vol 101 ◽  
pp. 53-60 ◽  
Author(s):  
Sofie Huysman ◽  
Sam Debaveye ◽  
Thomas Schaubroeck ◽  
Steven De Meester ◽  
Fulvio Ardente ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document