Image Feature Matching Based on SIFT Algorithm

2014 ◽  
Vol 644-650 ◽  
pp. 4157-4161
Author(s):  
Xin Zhang ◽  
Ya Sheng Zhang ◽  
Hong Yao

In the process of image matching, it is involved such as image rotation, scale zooming, brightness change and other problems. In order to improve the precision of image matching, image matching algorithm based on SIFT feature point is proposed. First, the method of generating scale space is introduced. Then, the scale and position of feature points are determined through three dimension quadratic function and feature vectors are determined through gradient distribution characteristic of neighborhood pixels of feature points. Finally, feature matching is completed based on the Euclidean distance. The experiment result indicates that using SIFT feature point can achieve image matching effectively.

2011 ◽  
Vol 121-126 ◽  
pp. 4656-4660 ◽  
Author(s):  
Yuan Cong ◽  
Xiao Rong Chen ◽  
Yi Ting Li

SIFT feature matching algorithm is hot in the field of the currently feature matching research, its matching with the strong ability can deal with the translation, rotation, affine transformation occurring between images , and it also have a stable image feature matching ability to the images filmed at any angle. SIFT algorithm is adopted in this paper, matching feature point through the scale space , calculating the histogram of detecting feature point neighborhood of gradient direction characteristic vector and generation to SIFT eigenvector and the key points similarity measure. From different setting threshold, scale scaling, rotating, noise on the experiment, the experiment result proves this algorithm in the above aspects has good robustness, suitable for mass characteristic database of rapid, accurate matching.


2013 ◽  
Vol 380-384 ◽  
pp. 3986-3989
Author(s):  
Ying Lu ◽  
Hui Qin Wang ◽  
Fei Xu ◽  
Wei Guang Liu

Because the SIFT (scale invariant feature transform) algorithm can not accurately locate the flame shape features and computationally intensive, this article proposed a stereo video image fire flame matching method which is a combination of Harris corner and SIFT algorithm. Firstly, the algorithm extracts image feature points using Harris operator in Gaussian scale space and defines the main directions for each feature point, and then calculates the 32-dimensional feature vectors of each feature point descriptor and the Euclidean distance to match two images. Experimental results of image matching demonstrate that the new algorithm improves the significance of the shape of the extracted feature points and keep a better match rate of 96%. At the same time the time complexity is reduced by 27.8%. This algorithm has a certain practicality.


2011 ◽  
Vol 181-182 ◽  
pp. 37-42
Author(s):  
Xin Yu Li ◽  
Dong Yi Chen

Tracking and registration of camera and object is one of the most important issues in Augmented Reality (AR) systems. Markerless visual tracking technologies with image feature are used in many AR applications. Feature point based neural network image matching method has attracted considerable attention in recent years. This paper proposes an approach to feature point correspondence of image sequence based on transient chaotic neural networks. Rotation and scale invariant features are extracted from images firstly, and then transient chaotic neural network is used to perform global feature matching and perform the initialization phase of the tracking. Experimental results demonstrate the efficiency and the effectiveness of the proposed method.


2013 ◽  
Vol 647 ◽  
pp. 896-900 ◽  
Author(s):  
Feng Tian ◽  
Yu Bo Yan

For solving the low matching efficiency problem due to high dimension of eigenvector in SIFT, a SIFT feature matching algorithm based on semi-variance function is proposed. For each feature point in image SIFT feature point zone, m beams are generated by using the position of the feature point as center and the orientation of the feature point as start direction. The image semi-variance function value of each beam, which is treated as SIFT value of eigenvector descriptor, is used in the algorithm aiming at reducing the dimension of eigenvector and improving image matching efficiency. The experiment result shows that the matching rate of this algorithm is higher, the matching time of this algorithm is less.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1839
Author(s):  
Yutong Zhang ◽  
Jianmei Song ◽  
Yan Ding ◽  
Yating Yuan ◽  
Hua-Liang Wei

Fisheye images with a far larger Field of View (FOV) have severe radial distortion, with the result that the associated image feature matching process cannot achieve the best performance if the traditional feature descriptors are used. To address this challenge, this paper reports a novel distorted Binary Robust Independent Elementary Feature (BRIEF) descriptor for fisheye images based on a spherical perspective model. Firstly, the 3D gray centroid of feature points is designed, and the position and direction of the feature points on the spherical image are described by a constructed feature point attitude matrix. Then, based on the attitude matrix of feature points, the coordinate mapping relationship between the BRIEF descriptor template and the fisheye image is established to realize the computation associated with the distorted BRIEF descriptor. Four experiments are provided to test and verify the invariance and matching performance of the proposed descriptor for a fisheye image. The experimental results show that the proposed descriptor works well for distortion invariance and can significantly improve the matching performance in fisheye images.


2021 ◽  
Vol 5 (4) ◽  
pp. 783-793
Author(s):  
Muhammad Muttabi Hudaya ◽  
Siti Saadah ◽  
Hendy Irawan

needs a solid validation that has verification and matching uploaded images. To solve this problem, this paper implementing a detection model using Faster R-CNN and a matching method using ORB (Oriented FAST and Rotated BRIEF) and KNN-BFM (K-Nearest Neighbor Brute Force Matcher). The goal of the implementations is to reach both an 80% mark of accuracy and prove matching using ORB only can be a replaced OCR technique. The implementation accuracy results in the detection model reach mAP (Mean Average Precision) of 94%. But, the matching process only achieves an accuracy of 43,46%. The matching process using only image feature matching underperforms the previous OCR technique but improves processing time from 4510ms to 60m). Image matching accuracy has proven to increase by using a high-quality dan high quantity dataset, extracting features on the important area of EKTP card images.


2012 ◽  
Vol 236-237 ◽  
pp. 759-764 ◽  
Author(s):  
Ping Yu ◽  
Bao Guo Dong ◽  
Yu Juan Xue

In video monitoring system of substation, in-process video inspection is used to detect abnormalities and provide corresponding solutions in a timely manner to avoid failures.As the common equipment,electric power tower’s inclination should be detected timely..It was hard to check the fault of tower inclination timely and accurately only by staff’s routine inspection,and it will spent much manpower and material resources by the manner of sensor. A manner of substation video inspection tower inclination angle detection based on SIFT feature matching and OTSU was presented in this paper. The tower inclination angle was calculated through the matched feature points. As is proved in the simulation test, this algorithm features simplicity and it can detect the maximum angle in all case of inclination .


2012 ◽  
Vol 433-440 ◽  
pp. 5420-5424 ◽  
Author(s):  
Li Jing Cao ◽  
Ming Lv

This paper concerns the problem of image mosaic. An image matching method based on SIFT features and an image blending method of improved Hat function are proposed in the paper. SIFT feature is local feature and keeps invariant to scale zoom, rotation and illumination. It is also insensitive to noise, view point changing and so on. Because of this our method is insensitive to orientation, scale and illumination of input images, so it’s possible to accomplish image mosaic between arbitrary matching images and the Hat function blending algorithm with global intensity revise makes the mosaic image accepted by human eyes.


2014 ◽  
Vol 543-547 ◽  
pp. 2670-2673
Author(s):  
Lei Cao ◽  
Di Liao ◽  
Bin Dang Xue

Aiming to solve the high computational and time consuming problem in SIFT feature matching, this paper presents an improved SIFT feature matching algorithm based on reference point. The algorithm starts from selecting a suitable reference point in the feature descriptor space when SIFT features are extracted. In the feature matching stage, this paper uses the Euclidean distance between descriptor vectors of the feature point to be matched and the reference point to make a fast filtration which removes most of the features that could not be matched. For the remaining SIFT features, Best-bin-first (BBF) algrithm is utilized to obtain precise matches. Experimental results demonstrate that the proposed matching algorithm achieves good effectiveness in image matching, and takes only about 60 percent of the time that the traditional matching algorithm takes.


Author(s):  
Hongmin Liu ◽  
Hongya Zhang ◽  
Zhiheng Wang ◽  
Yiming Zheng

For images with distortions or repetitive patterns, the existing matching methods usually work well just on one of the two kinds of images. In this paper, we present novel triangle guidance and constraints (TGC)-based feature matching method, which can achieve good results on both kinds of images. We first extract stable matched feature points and combine these points into triangles as the initial matched triangles, and triangles combined by feature points are as the candidates to be matched. Then, triangle guidance based on the connection relationship via the shared feature point between the matched triangles and the candidates is defined to find the potential matching triangles. Triangle constraints, specially the location of a vertex relative to the inscribed circle center of the triangle, the scale represented by the ratio of corresponding side lengths of two matching triangles and the included angles between the sides of two triangles with connection relationship, are subsequently used to verify the potential matches and obtain the correct ones. Comparative experiments show that the proposed TGC can increase the number of the matched points with high accuracy under various image transformations, especially more effective on images with distortions or repetitive patterns due to the fact that the triangular structure are not only stable to image transformations but also provides more geometric constraints.


Sign in / Sign up

Export Citation Format

Share Document