Finite Element Analysis to Predict the Mechanical Behavior of Lattice Structures Made by Selective Laser Melting Technology

2014 ◽  
Vol 657 ◽  
pp. 231-235 ◽  
Author(s):  
Răzvan Păcurar ◽  
Ancuţa Păcurar ◽  
Anna Petrilak ◽  
Nicolae Bâlc

Within this article, there are presented a series of researches that are related to the field of customized medical implants made by Additive Manufacturing techniques, such as Selective Laser Melting (SLM) technology. Lattice structures are required in this case for a better osteointegration of the medical implant in the contact area of the bone. But the consequence of using such structures is important also by the mechanical resistance point of view. The shape and size of the cells that are connected within the lattice structure to be manufactured by SLM is critical in this case. There are also few limitations related to the possibilities and performances of the SLM equipment, as well. This is the reason why, several types of lattice structures were designed as having different geometric features, with the aim of analyzing by using finite element method, how the admissible stress and strain will be varied in these cases and what would be the optimum size and shape of the cells that confers the optimum mechanical behavior of lattice structures used within the SLM process of the customized medical implant manufactured from titanium-alloyed materials.

Author(s):  
Paweł Płatek ◽  
Judyta Sienkiewicz ◽  
Jacek Janiszewski ◽  
Fengchun Jiang

Nine variants of regular lattice structures with different relative densities have been designed and successfully manufactured. The produced structures have been subjected to geometrical quality control, and the manufacturability of the implemented selective laser melting SLM technique has been assessed. It was found that the dimensions of the produced lattice struts differ from those of the designed struts. These deviations depend on the direction of geometrical evaluation. Additionally, the microstructures and phase compositions of the obtained structures were characterized and compared with those of conventionally produced 316L stainless steel. The microstructure analysis and X-Ray Diffraction XRD patterns revealed a single austenite phase in the SLM samples. Both a certain broadening and a displacement of the austenite peaks were observed due to residual stresses and a crystallographic texture induced by the SLM process. Furthermore, the mechanical behavior of the lattice structure material has been defined. It was demonstrated that under both quasi-static and dynamic testing, lattice structures with high relative densities are stretch-dominated, whereas those with low relative densities are bending-dominated. Moreover, the linear relationship between the energy absorption and relative density under dynamic loading conditions has been defined


Optik ◽  
2020 ◽  
Vol 207 ◽  
pp. 163760 ◽  
Author(s):  
Junfeng Li ◽  
Zhengying Wei ◽  
Lixiang Yang ◽  
Bokang Zhou ◽  
Yunxiao Wu ◽  
...  

2014 ◽  
Vol 657 ◽  
pp. 236-240 ◽  
Author(s):  
Razvan Păcurar ◽  
Ancuţa Păcurar

One of the serious problems in the SLM process, using metallic powders is the thermal distortion of the model during forming. As a result of the locally concentrated energy input, the temperature gradient mechanism and the related processes lead to residual stresses and part deformations. Since the solidified part is cooled rapidly, the model tends to be deformed and cracked due to the thermal stresses. All these aspects were considered for a series of analyses that were made using the finite element method in order to determine the optimum process parameters (laser power, scanning speed, powder bed temperature) that are required in order to improve the accuracy of the metallic parts made by Stainless Steel 316L material using the Selective Laser Melting process.


Author(s):  
Alexander Geringer ◽  
Stefan Diebels ◽  
Frank P. Nothdurft

AbstractTo predict the clinical performance of zirconia abutments, it is crucial to examine the mechanical behavior of different dental implant-abutment connection configurations. The international standard protocol for dynamic fatigue tests of dental implants (ISO 14801) allows comparing these configurations using standardized superstructure geometries. However, from a mechanical point of view, the geometry of clinical crowns causes modified boundary conditions. The purpose of this finite element (FE) study was to evaluate the influence of the superstructure geometry on the maximum stress values of zirconia abutments with a conical implant-abutment connection. Geometry models of the experimental setup described in ISO 14801 were generated using CAD software following the reconstruction of computerized tomography scans from all relevant components. These models served as a basis for an FE simulation. To reduce the numerical complexity of the FE model, the interaction between loading stamp and superstructure geometry was taken into account by defining the boundary conditions with regard to the frictional force. The results of the FE simulations performed on standardized superstructure geometry and anatomically shaped crowns showed a strong influence of the superstructure geometry and related surface orientations on the mechanical behavior of the underlying zirconia abutments. In conclusion, ISO testing of zirconia abutments should be accompanied by load-bearing capacity testing under simulated clinical conditions to predict clinical performance.


Author(s):  
Recep M. Gorguluarslan ◽  
Seung-Kyum Choi ◽  
Hae-jin Choi

A methodology is proposed for uncertainty quantification to accurately predict the mechanical response of lattice structures fabricated by additive manufacturing. Effective structural properties of the lattice structures are characterized using a multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process, high resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling process facilitates obtaining of the homogenized strut properties of the lattice structure to reduce the computational cost of the detailed simulation model for the lattice structure. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also utilized to assess the predictive capability of the stochastic upscaling method used at strut level and lattice structure level. In comparison with physical compression tests, the proposed methodology of linking the uncertainty quantification with multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure by accounting for the uncertainties introduced by the additive manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document