Experimental Study and Detached Eddy Simulation of the Macro-Instability in an Eccentric Stirred Tank

2011 ◽  
Vol 66-68 ◽  
pp. 20-26 ◽  
Author(s):  
Feng Ling Yang ◽  
Shen Jie Zhou ◽  
Gui Chao Wang

The turbulent flow in stirred tank is highly complicated and anisotropic, especially when the macro-instability (MI) are involved. In this work, the numerical simulation method of the eccentric agitation was established based on the detached eddy simulation (DES) model to study the MI in an eccentric stirred tank. The turbulent flow in the eccentrically located Rushton turbine stirred tank was numerically investigated. The rotation of the impeller was simulated by the transient sliding mesh (SM) method. The effect of eccentricity, impeller Reynolds number and impeller-tank diameter ratio were studied in order to quantify the MI frequency. PIV experiments were performed to validate the DES results and frequency analyses were applied to the obtained time series of the velocity recordings. It was found that the flow field in eccentrically stirred tank are highly unsteady and is subject to MI with varying period less than 10 blade passage period. Good agreements have been found between the DES and PIV results, both indicate that the dominant frequency of MI increases linearly with the Reynolds number, increases with the impeller-tank diameter ratio and decreases with the eccentricity. According to the agreements between the experimental and simulation results, it can be concluded that the combination of DES and SM is suitable for the prediction of the MI phenomenon in stirred tanks.

2005 ◽  
Vol 60 (8-9) ◽  
pp. 2303-2316 ◽  
Author(s):  
Raul Alcamo ◽  
Giorgio Micale ◽  
Franco Grisafi ◽  
Alberto Brucato ◽  
Michele Ciofalo

AIChE Journal ◽  
2011 ◽  
Vol 58 (10) ◽  
pp. 3224-3241 ◽  
Author(s):  
J. Gimbun ◽  
C. D. Rielly ◽  
Z. K. Nagy ◽  
J. J. Derksen

2011 ◽  
Vol 236-238 ◽  
pp. 1487-1491 ◽  
Author(s):  
Feng Ling Yang ◽  
Shen Jie Zhou ◽  
Gui Chao Wang

In the present work, detached eddy simulation (DES) of the turbulent flow in an unbaffled stirred tank agitated by a six-pitched-blade turbine was carried out. The sliding mesh (SM) approach was applied to simulate the rotation of the impeller. For comparison, the computations based on the large eddy simulation (LES) model and RANS equations closed with Reynolds stress model (RSM) were also performed. The instantaneous velocity fluctuations, mean velocity and turbulent kinetic energy profiles were analyzed and compared with the laser doppler velocimetry (LDV) results from literature. Results show that DES model can capture the unsteady turbulent flow characteristics accurately. The mean velocity and turbulent kinetic energy profiles by the DES model are in good agreements with the LES results and the LDV data. Besides, the computational cost of DES is only about 80% of LES. By contrast, the results obtained by RSM are not so good. It can be concluded that the DES model can produce as similarly good predictions as LES with less computational cost, and can work as an alternative of the LES model in predicting the hydrodynamics in the stirred tanks.


2015 ◽  
Vol 127 ◽  
pp. 87-94 ◽  
Author(s):  
Thiyam Tamphasana Devi ◽  
Bimlesh Kumar ◽  
Ajey Kumar Patel

2013 ◽  
Vol 200 (10) ◽  
pp. 1347-1365 ◽  
Author(s):  
F. L. Yang ◽  
S. J. Zhou ◽  
C. X. Zhang ◽  
G. M. Evans ◽  
G. C. Wang

Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


2012 ◽  
Vol 232 ◽  
pp. 471-476 ◽  
Author(s):  
Rui Zhao ◽  
Chao Yan

The flow past a circular cylinder at a subcritical Reynolds number 3900 was simulated by the method of detached-eddy simulation (DES). The objective of this present work is not to investigate the physical phenomena of the flow but to study modeling as well as numerical aspects which influence the quality of DES solutions in detail. Firstly, four typical spanwise lengths are chosen and the results are systematically compared. The trend of DES results along the span increment is different from previous large-eddy simulation (LES) investigation. A wider spanwise length does not necessary improve the results. Then, the influence of mesh resolution is studied and found that both too coarse and over refined grids will deteriorate the performance of DES. Finally, different orders of numerical schemes are applied in the inviscid fluxes and the viscous terms. The discrepancies among different schemes are found tiny. However, the instantaneous flow structures produced by 5th order WENO with 4th order central differencing scheme are more abundant than the others. That is, for the time-averaged quantities, the second-order accurate schemes are effective enough, whereas the higher-order accurate methods are needed to resolve the transient characteristics of the flow.


Sign in / Sign up

Export Citation Format

Share Document