Mechanical Properties of Polypropylene Fiber Concrete after High Temperature

2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.

2013 ◽  
Vol 739 ◽  
pp. 264-267
Author(s):  
Chun Lu

concrete materials with low tensile strength, easy to crack, and the brittleness of the shortcomings in the polypropylene fiber concrete can improve performance. The compressive strength and flexural strength of the mechanical properties of polypropylene fiber reinforced concrete pilot study shows that the fiber content and curing age a great influence on the mechanical properties of polypropylene fiber reinforced concrete, the polypropylene fibers affordable dosage take1.5 percent is appropriate.


2011 ◽  
Vol 219-220 ◽  
pp. 1601-1607 ◽  
Author(s):  
Tammam Merhej ◽  
Xin Kai Li ◽  
De Cheng Feng

This paper presents the experimental investigation carried out to study the behavior of polypropylene fiber reinforced concrete (PPFRC) under compression and flexure. Crimped polypropylene fibers and twisted polypropylene fiber were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. The influence of the volume fraction of each shape of polypropylene fiber on the compressive strength and flexural strength is presented. Empirical equations to predict the effect of polypropylene fiber on compressive and flexural strength of concrete were proposed using linear regression analysis. An increase of 27% in flexural strength was obtained when 0.6% volume fraction of twisted polypropylene fiber was added. It was also found that the contribution of fiber in flexural strength is more effective when twisted fibers were used. The compressive strength was found to be less affected by polypropylene fiber addition.


Author(s):  
Luis Octavio González Salcedo ◽  
Aydee Patricia Guerrero Zúñiga ◽  
Silvio Delvasto Arjona ◽  
Adrián Luis Ernesto Will

Resumen En diseño y construcción de estructuras de concreto, la resistencia a compresión lograda a los 28 días, es la especificación de control de estabilidad de la obra. La inclusión de fibras como reforzamiento de la matriz cementicia, ha permitido una ganancia en sus propiedades, además de la obtención de un material de alto desempeño; sin embargo, la resistencia a compresión sigue siendo la especificación a cumplir en la normatividad de la construcción. Las redes neuronales artificiales, como un símil de las neuronas biológicas, han sido utilizadas como herramientas de predicción de la resistencia a compresión en el concreto sin fibra. Los antecedentes en este uso, muestran que es de interés el desarrollo de aplicaciones en los concretos reforzados con fibras. En el presente trabajo, redes neuronales artificiales han sido elaboradas para predecir la resistencia a compresión en concretos reforzados con fibras de polipropileno. Los resultados de los indicadores de desempeño muestran que las redes neuronales artificiales elaboradas pueden realizar una aproximación adecuada al valor real de la propiedad mecánica, abriendo una futura e interesante agenda de investigación. Palabras ClavesResistencia a compresión; concreto reforzado con fibras; fibra de polipropileno; predicción; inteligencia artificial; redes neuronales artificiales.   Abstract In concrete structures’ design and construction, the compressive strength achieved at 28 days, is the work’s stability control specification. The inclusion of reinforcing fibers into the cementicious matrix, has allowed a gain in their properties, as well as obtaining a high performance material, however, the compressive strength remains the specification to meet the construction regulations. Artificial neural networks as a biological neurons’ simile have been used as tools for predicting the plain concrete compressive strength. The backgrounds in this application show that interest is the development of applications in fiber-reinforced concrete. In this paper, artificial neural networks have been developed to predict the compressive strength in polypropylene fiber reinforced concrete. The results of the performance indicators show that the developed artificial neural networks can perform an adequate approximation to the actual value of the mechanical property, opening an interesting future research.KeywordsCompressive strength, fiber-reinforced concrete, polypropylene fiber, prediction, artificial intelligence, artificial neural networks.


2015 ◽  
Vol 10 (4) ◽  
pp. 155892501501000
Author(s):  
Ramesh Kanagavel ◽  
K. Arunachalam

Mechanical properties of quaternary blending cement concrete reinforced with hybrid fibers are evaluated in this experimental study. The steel fibers were added at volume fractions of 0.5%, 1%, and 1.5 % and polypropylene fibers were added at 0.25% and 0.5% by weight of cementitious materials in the concrete mix individually and in hybrid form to determine the compressive strength, split tensile strength, flexural strength and impact resistance for all the mixes. The experimental results revealed that fiber addition improves the mechanical properties and also the ductility and energy absorption of the concrete. The results also demonstrate that the hybrid steel – polypropylene fiber reinforced concrete performs better in compressive strength, split tensile strength, flexural strength and impact resistance than mono steel and mono polypropylene fiber reinforced concrete.


2017 ◽  
Vol 3 (3) ◽  
pp. 116
Author(s):  
Majid Atashafrazeh ◽  
Ahmet Ferhat Bingöl ◽  
Murat Caf

This paper describes the strength of Polypropylene Fiber Reinforced Concrete (PFRC) exposed to the elevated temperatures. In the study, control specimens without any fibers and the concrete specimens with the ratios of 0.30, 0.60, 0.90 and 1.20 kg/m³ polypropylene fibers both in woolen and bar shape fiber have been produced. The specimens have been kept in the laboratory conditions for 28 days. Shortly after the curing period was completed, every group was heated at 23, 150, 300, 450, 600 and 750°C for two hours then the compressive strengths of them were determined. The maximum compressive strength was obtained by the specimens including 0.30 kg/m³ woolen polypropylene. For this group, the compressive strength increase was 8% according to the control specimens. The compressive strengths of bar polypropylene fiber concrete were higher than the wool fibers under elevated temperatures. On the other hand, more compressive strength values are obtained from the control specimens than fiber groups at 600°C temperature. Melting the polypropylene fiber at 500°C formed some pore spaces in concrete and caused reduction of the compressive strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Jie Huang ◽  
Yi Zhang ◽  
Yubin Tian ◽  
Hengheng Xiao ◽  
Jun Shi ◽  
...  

This paper presents the results of an experimental research designed to investigate the dynamic mechanical properties and constitutive model of fiber reinforced concrete (FRC), including steel fiber reinforced concrete (SFRC) and polypropylene fiber reinforced concrete (PFRC) under fast loading. Experimental results are achieved by using the electrohydraulic servo loading test method, implying that the dynamic mechanical properties of PFRC and SFRC, such as peak stress, peak strain, and toughness, are positively affected by strain rate. The experimental elastic modulus test results of FRC with different fiber contents indicate that the elastic modulus is positively affected by polypropylene or steel fibers and increases with the increment of fiber content. Finally, the experimental stress-strain curves obtained in the MTS electrohydraulic servo system test are fitted by a damage dynamic constitutive model of FRC. The good fitting with experimental results proves that the model could be appropriate to describe the dynamic mechanical properties of FRC.


Sign in / Sign up

Export Citation Format

Share Document