Preparation of a Novel Composite Nanofiltration Membrane

2014 ◽  
Vol 665 ◽  
pp. 272-274
Author(s):  
Wei Wang ◽  
Teng Teng Qi ◽  
Yu Feng Zhang

PDMAEMA/PSF nanofiltration (NF) membranes were prepared through interfacial polymerization of poly [2-(N,N-dimethyl amino) ethyl methacrylate](PDMAEMA) on porous polysulfone (PSF) substrate membranes. The effects of aqueous solution’s pH and crosslinking time and on separation performances of the PDMAEMA/PSF NF membrane were investigated. The results show that the rejection and flux of the PDMAEMA/PSF NF membrane show pH-sensitive behavior in NF process. Importantly, the membrane show a different separation between inorganic salts and small organic molecules.

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3112
Author(s):  
Jack Freeland ◽  
Lihua Zhang ◽  
Shih-Ting Wang ◽  
Mason Ruiz ◽  
Yong Wang

Due to the central role of DNA, its interactions with inorganic salts and small organic molecules are important. For example, such interactions play important roles in various fundamental cellular processes in living systems and are involved in many DNA-damage related diseases. Strategies to improve the sensitivity of existing techniques for studying DNA interactions with other molecules would be appreciated in situations where the interactions are too weak. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as screening DNA-interacting molecules and drugs.


2020 ◽  
Author(s):  
Jack Freeland ◽  
Lihua Zhang ◽  
Shih-Ting Wang ◽  
Mason Ruiz ◽  
Yong Wang

AbstractDue to the central role of DNA, its interactions with inorganic salts and small organic molecules are important for understanding various fundamental cellular processes in living systems, deciphering the mechanism of many diseases related to DNA damages, and discovering or designing inhibitors and drugs targeting DNA. However, there is still a need for improved sensitivity to detect these interactions, especially in situations where expensive sophisticated equipment is not available. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as monitoring water quality and screening DNA-targeting molecules and drugs.


Author(s):  
Joshua Horton ◽  
Alice Allen ◽  
Leela Dodda ◽  
Daniel Cole

<div><div><div><p>Modern molecular mechanics force fields are widely used for modelling the dynamics and interactions of small organic molecules using libraries of transferable force field parameters. For molecules outside the training set, parameters may be missing or inaccurate, and in these cases, it may be preferable to derive molecule-specific parameters. Here we present an intuitive parameter derivation toolkit, QUBEKit (QUantum mechanical BEspoke Kit), which enables the automated generation of system-specific small molecule force field parameters directly from quantum mechanics. QUBEKit is written in python and combines the latest QM parameter derivation methodologies with a novel method for deriving the positions and charges of off-center virtual sites. As a proof of concept, we have re-derived a complete set of parameters for 109 small organic molecules, and assessed the accuracy by comparing computed liquid properties with experiment. QUBEKit gives highly competitive results when compared to standard transferable force fields, with mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and 1.17 kcal/mol for the liquid density, heat of vaporization and free energy of hydration respectively. This indicates that the derived parameters are suitable for molecular modelling applications, including computer-aided drug design.</p></div></div></div>


Author(s):  
Joshua Horton ◽  
Alice Allen ◽  
Leela Dodda ◽  
Daniel Cole

<div><div><div><p>Modern molecular mechanics force fields are widely used for modelling the dynamics and interactions of small organic molecules using libraries of transferable force field parameters. For molecules outside the training set, parameters may be missing or inaccurate, and in these cases, it may be preferable to derive molecule-specific parameters. Here we present an intuitive parameter derivation toolkit, QUBEKit (QUantum mechanical BEspoke Kit), which enables the automated generation of system-specific small molecule force field parameters directly from quantum mechanics. QUBEKit is written in python and combines the latest QM parameter derivation methodologies with a novel method for deriving the positions and charges of off-center virtual sites. As a proof of concept, we have re-derived a complete set of parameters for 109 small organic molecules, and assessed the accuracy by comparing computed liquid properties with experiment. QUBEKit gives highly competitive results when compared to standard transferable force fields, with mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and 1.17 kcal/mol for the liquid density, heat of vaporization and free energy of hydration respectively. This indicates that the derived parameters are suitable for molecular modelling applications, including computer-aided drug design.</p></div></div></div>


ACS Omega ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 4995-5000 ◽  
Author(s):  
Jiaxiang Zhang ◽  
Junwen Yang ◽  
Ziyue Liu ◽  
Bin Zheng

Author(s):  
Mohamed R. Rizk ◽  
Muhammad G. Gamal ◽  
Amina Mazhar ◽  
Mohamed El-Deab ◽  
Bahgat El-Anadouli

In this work, we report a single-step preparation of porous Ni-based foams thin layer atop Cu substrate via a facile dynamic hydrogen bubble template technique (DHBT). The prepared porous Ni-based...


Sign in / Sign up

Export Citation Format

Share Document