Bio-Oil Production from Fast Pyrolysis of Corn Stalk in a Fluidized Bed

2014 ◽  
Vol 672-674 ◽  
pp. 143-146 ◽  
Author(s):  
Peng Fu ◽  
Zhi He Li ◽  
Xue Yuan Bai ◽  
Wei Ming Yi

Fast pyrolysis of corn stalk was performed at temperatures in the range of 450 - 600 °C in a fluidized bed. The chemical composition of bio-oil was analyzed by GC–MS, and its main properties were determined. The results showed that the bio-oil yield increased with increasing pyrolysis temperature from 450 °C to 500 °C and then declined with a further increase in pyrolysis temperature. The highest bio-oil yield of 43.3wt% was obtained at 500 °C with the dolomite as bed material. The char yield always decreased with the rise of temperature. The major chemical compounds of bio-oil included hydroxyacetone, butanone, acetic acid, propionic acid, ethylene glycol, phenol, etc.

2014 ◽  
Vol 625 ◽  
pp. 616-619
Author(s):  
Ali Norizan ◽  
Yoshimitsu Uemura ◽  
Hafizah Ahmad Afif ◽  
Noridah Osman ◽  
Wissam N. Omar ◽  
...  

This study investigates the effect of pyrolysis temperature on the yields of char, organic compounds, water and gas. Fast pyrolysis was carried out in a fluidized bed reactor of 108 mm in internal diameter operated at 400, 450, 500 and 550 °C with nitrogen gas with flow rate of 25 L(NTP)/min. In specific the effect of temperature on the yields of known and unknown organics in bio-oil is discussed. For higher total organics, 500 oC was favorable. But higher phenol and acetic acid yields, 450 oC was preferable. The major organics include acetic acid, phenol and furfural. The minor ones include 2-methylphenol, 4-methylphenol, 4-methylnaphthalene, benzene, toluene and THF.


2014 ◽  
Vol 625 ◽  
pp. 608-611
Author(s):  
Yoshimitsu Uemura ◽  
Ali Norizan ◽  
Hafizah Ahmad Afif ◽  
Norridah Osman ◽  
Wissam N. Omar ◽  
...  

This study investigates the effect of biomass size on the yields of char, liquid (organic compounds and water) and gas for fast pyrolysis of palm kernel shell (PKS). Fast pyrolysis was carried out in a fluidized bed reactor of 108 mm in internal diameter operated at 450 °C using three different sizes of palm kernel shell (0.325, 0.75 and 1.5 mm). In specific the effect of biomass size on the yields of known and unknown organics in bio-oil was mainly investigated. The major organics include acetic acid, phenol and furfural. The minor ones include 2-methylphenol, 4-methylphenol, 2-methylnaphthalene, benzene, toluene and tetrahydrofurane (THF). Smaller biomass sizes were favorable for higher bio-oil yields.


2011 ◽  
Vol 347-353 ◽  
pp. 153-156
Author(s):  
Yen Chang Chen ◽  
Yung Ning Pan

The effects of process parameters of biomass grain size (ranging from 0.425 to 3.35mm), rotational speed (ranging from 20 to 60rpm) and the pyrolysis temperature (ranging from 400 to 550 oC) on the yield of bio-oil were investigated in this study by using a fast pyrolysis reactor with a single tapered screw extruder. This study gives the optimal pyrolysis temperatures and rotational speeds for different grain sizes to achieve peak bio-oil yield. The results indicate that higher feed rates are required for larger grain sizes to achieve peak bio-oil yields. For instance, a 20rpm rotational speed is for 0.425~1.18mm grain sizes (50~57% bio-oil yield), while a 40rpm rotational speed is for 1.7~3.35mm grain sizes (56~60% bio-oil yield). This implies that the productivity of bio-oil can be significantly increased in the current system. For the case of 2.5~3.35mm grain size, which corresponds to an optimal rotational speed of 40rpm, the production rate was estimated to be around 4kg/h.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


2010 ◽  
Vol 33 (12) ◽  
pp. 2021-2028 ◽  
Author(s):  
P. Lan ◽  
Q. Xu ◽  
M. Zhou ◽  
L. Lan ◽  
S. Zhang ◽  
...  

2020 ◽  
Vol 58 (5) ◽  
pp. 604
Author(s):  
Hong Nam Nguyen ◽  
Bùi Văn Đức ◽  
Ngoc Linh Vu ◽  
Hong Nam Nguyen ◽  
Thi Thu Ha Vu ◽  
...  

Despite its prominent potential, the use of rubber wood (Hevea brasiliensis) for bio-oil production has not been fully investigated. This study reported experimental results of the bio-oil production and upgrading from rubber wood using fast pyrolysis technology. The effects of catalyst nature (vermiculite and dolomite), upgrading temperature and bio-oil/catalyst ratio on the product quality were deeply investigated. The results showed that dolomite was suitable to be used as a catalyst for bio-oil upgrading. At 600 °C and a bio-oil/catalyst ratio of 1:1, the bio-oil yield was maximized, while at 400 °C and a ratio of 1:3, the bio-oil heating value was maximized. Depending on usage purposes, a yield-oriented, heating value-oriented or in-between bio-oil upgrading solution could be considered.


Energy ◽  
2014 ◽  
Vol 76 ◽  
pp. 284-291 ◽  
Author(s):  
Jae-Young Kim ◽  
Shinyoung Oh ◽  
Hyewon Hwang ◽  
Youn-Ho Moon ◽  
Joon Weon Choi

2018 ◽  
Vol 32 (3) ◽  
pp. 3608-3613 ◽  
Author(s):  
Wenran Gao ◽  
Mingming Zhang ◽  
Hongwei Wu

Sign in / Sign up

Export Citation Format

Share Document