Simulation for Automotive Engine Fault Diagnosis Method

2014 ◽  
Vol 687-691 ◽  
pp. 882-885
Author(s):  
Huan Xue Liu ◽  
Guang Dong Zhang ◽  
Zhen Zhong Zhang

For engine fault diagnosis problem, an engine fault diagnosis method based on particle swarm optimization algorithm is proposed. The velocity and spatial position of all the particles in the particle swarm are updated, in order to provide accurate data basis for the engine fault diagnosis. Particle swarm optimization method is utilized to process iteration for all particles, so as to determine whether failure exists in components of engine. Experimental results show that with the proposed algorithm to diagnose engine fault can effectively improve the accuracy of fault diagnosis, and achieved the desired results.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaofeng Lv ◽  
Deyun Zhou ◽  
Ling Ma ◽  
Yuyuan Zhang ◽  
Yongchuan Tang

The fault rate in equipment increases significantly along with the service life of the equipment, especially for multiple fault. Typically, the Bayesian theory is used to construct the model of faults, and intelligent algorithm is used to solve the model. Lagrangian relaxation algorithm can be adopted to solve multiple fault diagnosis models. But the mathematical derivation process may be complex, while the updating method for Lagrangian multiplier is limited and it may fall into a local optimal solution. The particle swarm optimization (PSO) algorithm is a global search algorithm. In this paper, an improved Lagrange-particle swarm optimization algorithm is proposed. The updating of the Lagrangian multipliers is with the PSO algorithm for global searching. The difference between the upper and lower bounds is proposed to construct the fitness function of PSO. The multiple fault diagnosis model can be solved by the improved Lagrange-particle swarm optimization algorithm. Experiment on a case study of sensor data-based multiple fault diagnosis verifies the effectiveness and robustness of the proposed method.


2014 ◽  
Vol 989-994 ◽  
pp. 1204-1207
Author(s):  
Xin Nan Zhou ◽  
De Ping Ke ◽  
Yuan Zhang Sun ◽  
Lu Yang Xu

The fault-diagnosis and recovery strategy of the electric distribution network were discussed. The procedure of the hybrid genetic – particle swarm optimization algorithm, together with a practical example, was also introduced.


2013 ◽  
Vol 771 ◽  
pp. 173-177
Author(s):  
Hui Lin Shan ◽  
Yin Sheng Zhang

This paper presents principles of a down-converted mixer for four sub-harmonic and proposes a particle swarm optimization algorithm as a global search algorithm, and the performance equation is used as the assessment of the mixer circuit optimization method. Dielectric substrate adopts Electronic Materials with RF/Duroid 5880 whose dielectric constant is 2.20 and 5mil in thickness. The optimization algorithm can quickly get optimal results. The simulation results show that this mixer achieves higher 1 dB compression point, loss of frequency conversion which is less than 15 dB and good linearity.


2019 ◽  
Vol 30 (8) ◽  
pp. 1263-1275 ◽  
Author(s):  
Quan Zhang ◽  
Yichong Dong ◽  
Yan Peng ◽  
Jun Luo ◽  
Shaorong Xie ◽  
...  

The hysteresis characteristics, which commonly existed in smart materials–based actuators, play a significant role in precision control technology. In this article, a modified Bouc–Wen model which can describe the asymmetric hysteresis characteristics of piezoelectric ceramic actuators is investigated. The corresponding parameters of the modified Bouc–Wen hysteresis model are identified through a genetic algorithm–based particle swarm optimization algorithm. Compared with independent particle swarm optimization method which is easily trapped in the local extremum, the proposed genetic algorithm–based particle swarm optimization features the strong searching ability both in early global search period and the later local search period. The experimental results show that the asymmetric Bouc–Wen model identified via genetic algorithm–based particle swarm optimization algorithm are more accurate than that identified through independent particle swarm optimization or genetic algorithm approach, and the maximum displacement error and the maximum relative error between the genetic algorithm–based particle swarm optimization model and the experimental value are 0.20 µm and 14.28%, respectively, which are much smaller than that of particle swarm optimization method with 0.67 µm and 47.85% and genetic algorithm method with 0.35 µm and 25%. In order to further verify the accuracy of the identified model, the hysteresis compensation of piezoelectric ceramic actuator was realized using the feedforward controller based on the inverse Bouc–Wen model.


Sign in / Sign up

Export Citation Format

Share Document