Research on Electronic Materials with Design of a Down-Conversion Mixer Based on Particle Swarm Optimization Algorithm

2013 ◽  
Vol 771 ◽  
pp. 173-177
Author(s):  
Hui Lin Shan ◽  
Yin Sheng Zhang

This paper presents principles of a down-converted mixer for four sub-harmonic and proposes a particle swarm optimization algorithm as a global search algorithm, and the performance equation is used as the assessment of the mixer circuit optimization method. Dielectric substrate adopts Electronic Materials with RF/Duroid 5880 whose dielectric constant is 2.20 and 5mil in thickness. The optimization algorithm can quickly get optimal results. The simulation results show that this mixer achieves higher 1 dB compression point, loss of frequency conversion which is less than 15 dB and good linearity.

Author(s):  
Kanagasabai Lenin

In this work Hybridization of Genetic Particle Swarm Optimization Algorithm with Symbiotic Organisms Search Algorithm (HGPSOS) has been done for solving the power dispatch problem. Genetic particle swarm optimization problem has been hybridized with Symbiotic organisms search (SOS) algorithm to solve the problem. Genetic particle swarm optimization algorithm is formed by combining the Particle swarm optimization algorithm (PSO) with genetic algorithm (GA).  Symbiotic organisms search algorithm is based on the actions between two different organisms in the ecosystem- mutualism, commensalism and parasitism. Exploration process has been instigated capriciously and every organism specifies a solution with fitness value.  Projected HGPSOS algorithm improves the quality of the search.  Proposed HGPSOS algorithm is tested in IEEE 30, bus test system- power loss minimization, voltage deviation minimization and voltage stability enhancement has been attained.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 275
Author(s):  
Chandrasekhara Reddy T ◽  
Srivani V ◽  
A. Mallikarjuna Reddy ◽  
G. Vishnu Murthy

For minimized t-way test suite generation (t indicates more strength of interaction) recently many meta-heuristic, hybrid and hyper-heuristic algorithms are proposed which includes Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Genetic Algorithms (GA), Simulated Annealing (SA), Cuckoo Search (CS), Harmony Elements Algorithm (HE), Exponential Monte Carlo with counter (EMCQ), Particle Swarm Optimization (PSO), and Choice Function (CF). Although useful strategies are required specific domain knowledge to allow effective tuning before good quality solutions can be obtained. In our proposed technique test cases are optimized by utilizing Improved Cuckoo Algorithm (ICSA). At that point, the advanced experiments are organized or prioritized by utilizing Particle Swarm Optimization algorithm (PSO). The Particle Swarm Optimization and Improved Cuckoo Algorithm (PSOICSA) estimation is a blend of Improved Cuckoo Search Algorithm(ICSA) and Particle Swarm Optimization (PSO). PSOICSA could be utilized to advance the test suite, and coordinate both ICSA and PSO for a superior outcome, when contrasted with their individual execution as far as experiment improvement. 


2019 ◽  
Vol 30 (8) ◽  
pp. 1263-1275 ◽  
Author(s):  
Quan Zhang ◽  
Yichong Dong ◽  
Yan Peng ◽  
Jun Luo ◽  
Shaorong Xie ◽  
...  

The hysteresis characteristics, which commonly existed in smart materials–based actuators, play a significant role in precision control technology. In this article, a modified Bouc–Wen model which can describe the asymmetric hysteresis characteristics of piezoelectric ceramic actuators is investigated. The corresponding parameters of the modified Bouc–Wen hysteresis model are identified through a genetic algorithm–based particle swarm optimization algorithm. Compared with independent particle swarm optimization method which is easily trapped in the local extremum, the proposed genetic algorithm–based particle swarm optimization features the strong searching ability both in early global search period and the later local search period. The experimental results show that the asymmetric Bouc–Wen model identified via genetic algorithm–based particle swarm optimization algorithm are more accurate than that identified through independent particle swarm optimization or genetic algorithm approach, and the maximum displacement error and the maximum relative error between the genetic algorithm–based particle swarm optimization model and the experimental value are 0.20 µm and 14.28%, respectively, which are much smaller than that of particle swarm optimization method with 0.67 µm and 47.85% and genetic algorithm method with 0.35 µm and 25%. In order to further verify the accuracy of the identified model, the hysteresis compensation of piezoelectric ceramic actuator was realized using the feedforward controller based on the inverse Bouc–Wen model.


2014 ◽  
Vol 687-691 ◽  
pp. 882-885
Author(s):  
Huan Xue Liu ◽  
Guang Dong Zhang ◽  
Zhen Zhong Zhang

For engine fault diagnosis problem, an engine fault diagnosis method based on particle swarm optimization algorithm is proposed. The velocity and spatial position of all the particles in the particle swarm are updated, in order to provide accurate data basis for the engine fault diagnosis. Particle swarm optimization method is utilized to process iteration for all particles, so as to determine whether failure exists in components of engine. Experimental results show that with the proposed algorithm to diagnose engine fault can effectively improve the accuracy of fault diagnosis, and achieved the desired results.


2017 ◽  
Vol 37 (10) ◽  
pp. 1022001 ◽  
Author(s):  
王 磊 Wang Lei ◽  
李思坤 Li Sikun ◽  
王向朝 Wang Xiangzhao ◽  
杨朝兴 Yang Chaoxing

Sign in / Sign up

Export Citation Format

Share Document