Electronic Structures and Theoretical Electronic Spcetra of Meso-Phenyl and 3,5-diaryl Substituted BODIPY Dyes

2014 ◽  
Vol 716-717 ◽  
pp. 167-170 ◽  
Author(s):  
Gao Zhang Gou ◽  
Ling Shi ◽  
Bo Zhou ◽  
Xian Lan Chen ◽  
Wei Liu ◽  
...  

The electronic absorption spectra of four meso-phenyl and 3,5-diaryl substituted BODIPY dyes, A to D, were investigated theoretically using the time-dependent density functional theory (TD-DFT) B3LYP method. The dependence of spectra with the molecular and electronic structures was investigated on the basis 6-31+G*, 6-31G and 6-31G* in different solvents. The UV-Vis spectra were in good accordance with the experimental values. The maximum wavelengths of BODIPYs arose from S0→S1 transition which stemmed from HOMO to LUMO (πbodipy core→πbodipy core*).

Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


2014 ◽  
Vol 92 (10) ◽  
pp. 979-986 ◽  
Author(s):  
Megumi Kayanuma ◽  
Chantal Daniel ◽  
Etienne Gindensperger

The absorption spectra of 11 rhenium(I) complexes with photoisomerizable stilbene-like ligands have been investigated by means of density functional theory (DFT). The electronic structures of the ground and excited states were determined for [Re(CO)3(N,N)(L)]+ (N,N = bpy (2,2′-bipyridine), phen (1,10-phenanthroline), Me4phen (3,4,7,8-tetramethyl-1,10-phenanthroline), ph2phen (4,7-diphenyl-1,10-phenanthroline), or Clphen (5-chloro-1,10-phenanthroline); L = bpe (1,2-bis(4-pyrydil)ethylene), stpy (4-styrylpyridine), or CNstpy (4-(4-cyano)styrylpyridine)) at the time–dependent (TD) DFT/CAM-B3LYP level of theory in vacuum and acetonitrile to highlight the effects of both antenna N,N and isomerizable L ligands. The TD-DFT spectra of two representative complexes, namely [Re(CO)3(bpy)(stpy)]+ and [Re(CO)3(phen)(bpe)]+, have been compared with MS-CASPT2 spectra. The TD-DFT spectra obtained in vacuum and acetonitrile agree rather well both with the ab initio and experimental spectra. The absorption spectroscopy of this series of molecules is characterized by the presence of three low-lying metal to ligand charge transfer (MLCT) states absorbing in the visible energy domain. The nature of the isomerizable ligands (bpe, stpy, or CNstpy) and the type of antenna ligands (bpy, phen, and substituted phen) control the degree of mixing between the MLCT and intraligand excited states, their relative energies, as well as their intensities.


RSC Advances ◽  
2017 ◽  
Vol 7 (20) ◽  
pp. 12170-12178 ◽  
Author(s):  
Quanjiang Li ◽  
Qianqian Ding ◽  
Weihua Lin ◽  
Jiangcai Wang ◽  
Maodu Chen ◽  
...  

In this study, we theoretically investigated the Raman and absorption spectra of pyrazine adsorbed on Au5Al5 bimetallic nanoclusters by a time-dependent density functional theory (TD-DFT) method.


2017 ◽  
Vol 5 (24) ◽  
pp. 5984-5993 ◽  
Author(s):  
Jianguang Feng ◽  
Hongzhou Dong ◽  
Liyan Yu ◽  
Lifeng Dong

The effects of five types of oxygen-containing functional groups (–COOH, –COC–, –OH, –CHO, and –OCH3) on graphene quantum dots (GQDs) are investigated using time-dependent density functional theory (TD-DFT).


2014 ◽  
Vol 13 (11) ◽  
pp. 1549-1560 ◽  
Author(s):  
Divya Sharma ◽  
Martin J. Paterson

MP2, DFT and TD-DFT applied to benzene–(water)6 clusters show how both perturb the electronic spectra of each other and give rise to new charge transfer features from the benzene to the water cluster.


2015 ◽  
Vol 1131 ◽  
pp. 117-122
Author(s):  
Nikorn Shinsuphan ◽  
Sriprajak Krongsuk ◽  
Vittaya Amornkitbamrung

The photoluminescence properties of pristine adamantane molecule have been calculated by time-dependent density functional theory (TD-DFT) within the hybrid functional level. This study aims to investigate the luminescence properties of the pristine adamantane molecule and its functionalized with neutral and ion of alkali metal to form C10H16-nXn structure (where X is Li, Li+, Na and Na+ atoms, n=1). The electronic gap of the pristine adamantane (7.15 eV) is too wide, leading to an insulator property. While all the functionalized adamantanes exhibit semiconducting behavior. The absorption and emission energies of the original structure are 6.51 eV and 5.63 eV, respectively which are in good agreement with experimental results. The pure adamantane exhibits a broad photoluminescence peak in the ultraviolet region (UV). The Stokes shift of the transition between vertical and emission is 0.88 eV which agrees well with the previous work that measures the Stokes shift of 0.7 eV. The modification of adamantane indicates that the absorption and emission gaps substantially decreases. Substituting with alkali metal causes the photoluminescence onset can be shifted from the UV to the near-IR region. These results suggest that pure and the alkali metal functionalized adamantane molecules are promoting as candidate materials for the opto-electronic applications in the ultraviolet to infrared spectral regions.


Sign in / Sign up

Export Citation Format

Share Document