Bioengineering Applications of 3D Scanning and Reconstruction Using a Depth Sensor

2015 ◽  
Vol 809-810 ◽  
pp. 920-925 ◽  
Author(s):  
Octavian Ciobanu

Paper approaches some characteristics and bioengineering applications of a handheld depth sensor for low-cost 3D scanning and reconstruction. The Kinect depth sensor used in this work was launched on June 2009 and was based around a gaming webcam peripheral. The Kinect sensor uses a structured light technique in order to develop real-time 3D surfaces. The 3D model of anatomic surface may have a lot of bioengineering applications. Some observations and comparisons are presented in connection with the scanning and 3D reconstruction of different anatomic surfaces.

Author(s):  
M. Hermann ◽  
B. Ruf ◽  
M. Weinmann

Abstract. Real-time 3D reconstruction enables fast dense mapping of the environment which benefits numerous applications, such as navigation or live evaluation of an emergency. In contrast to most real-time capable approaches, our method does not need an explicit depth sensor. Instead, we only rely on a video stream from a camera and its intrinsic calibration. By exploiting the self-motion of the unmanned aerial vehicle (UAV) flying with oblique view around buildings, we estimate both camera trajectory and depth for selected images with enough novel content. To create a 3D model of the scene, we rely on a three-stage processing chain. First, we estimate the rough camera trajectory using a simultaneous localization and mapping (SLAM) algorithm. Once a suitable constellation is found, we estimate depth for local bundles of images using a Multi-View Stereo (MVS) approach and then fuse this depth into a global surfel-based model. For our evaluation, we use 55 video sequences with diverse settings, consisting of both synthetic and real scenes. We evaluate not only the generated reconstruction but also the intermediate products and achieve competitive results both qualitatively and quantitatively. At the same time, our method can keep up with a 30 fps video for a resolution of 768 × 448 pixels.


Author(s):  
Agnieszka Chmurzynska ◽  
Karolina Hejbudzka ◽  
Andrzej Dumalski

During the last years the softwares and applications that can produce 3D models using low-cost methods have become very popular. What is more, they can be successfully competitive with the classical methods. The most wellknown and applied technology used to create 3D models has been laser scanning so far. However it is still expensive because of the price of the device and software. That is why the universality and accessibility of this method is very limited. Hence, the new low cost methods of obtaining the data needed to generate 3D models appeare on the market and creating 3D models have become much easier and accessible to a wider group of people. Because of their advantages they can be competitive with the laser scanning. One of the methods uses digital photos to create 3D models. Available software allows us to create a model and object geometry. Also very popular in the gaming environment device – Kinect Sensor can be successfully used as a different method to create 3D models. This article presents basic issues of 3D modelling and application of various devices, which are commonly used in our life and they can be used to generate a 3D model as well. Their results are compared with the model derived from the laser scanning. The acquired results with graphic presentations and possible ways of applications are also presented in this paper.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2981 ◽  
Author(s):  
Limei Song ◽  
Xinyao Li ◽  
Yan-gang Yang ◽  
Xinjun Zhu ◽  
Qinghua Guo ◽  
...  

The non-contact three-dimensional measurement and reconstruction techniques have played a significant role in the packaging and transportation of precious cultural relics. This paper develops a structured light based three-dimensional measurement system, with a low-cost for cultural relics packaging. The structured light based system performs rapid measurements and generates 3D point cloud data, which is then denoised, registered and merged to achieve accurate 3D reconstruction for cultural relics. The multi-frequency heterodyne method and the method in this paper are compared. It is shown that the relative accuracy of the proposed low-cost system can reach a level of 1/1000. The high efficiency of the system is demonstrated through experimental results.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2333 ◽  
Author(s):  
Simone Mentasti ◽  
Federico Pedersini

In this paper we present a simple stand-alone system performing the autonomous acquisition of multiple pictures all around large objects, i.e., objects that are too big to be photographed from any side just with a camera held by hand. In this approach, a camera carried by a drone (an off-the-shelf quadcopter) is employed to carry out the acquisition of an image sequence representing a valid dataset for the 3D reconstruction of the captured scene. Both the drone flight and the choice of the viewpoints for shooting a picture are automatically controlled by the developed application, which runs on a tablet wirelessly connected to the drone, and controls the entire process in real time. The system and the acquisition workflow have been conceived with the aim to keep the user intervention minimal and as simple as possible, requiring no particular skill to the user. The system has been experimentally tested on several subjects of different shapes and sizes, showing the ability to follow the requested trajectory with good robustness against any flight perturbations. The collected images are provided to a scene reconstruction software, which generates a 3D model of the acquired subject. The quality of the obtained reconstructions, in terms of accuracy and richness of details, have proved the reliability and efficacy of the proposed system.


2011 ◽  
Vol 464 ◽  
pp. 65-69
Author(s):  
Zi Qiang Zhou ◽  
Jing Hu Yu

Nowadays, the generally used automatic spraying machines are only suitable for mass products or components. The usage for multi-type and small-batch products is much limited for its time and labor consuming off-line programming. So this paper present a 3D scanning based 4-axies driving automatic spraying machine to overcome the bottle-neck of programming. By the laser installed under the horizontal slid table of the machine a linear structured light is projected on the surface of the work piece. Besides, two cameras are also symmetrically installed on the side of the laser to acquire the image. The real-time images of the camera are acquired into the computer by the image acquisition board. And then a program will process the images and output the featured point of the work pieces. According to these points, a specially designed algorithm based on the spraying principle will find out the trajectory of the spraying gun. Finally, through the PCI based motion control board, the controlling pulses are sending to the controller of the stepper motor. Then the spraying gun can move along the trajectory to painting the work piece.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-20 ◽  
Author(s):  
M. Zollhöfer ◽  
C. Siegl ◽  
M. Vetter ◽  
B. Dreyer ◽  
M. Stamminger ◽  
...  

2014 ◽  
Vol 2 (2) ◽  
pp. 95-99
Author(s):  
Claudia Raluca Popescu ◽  
Adrian Lungu

Sign in / Sign up

Export Citation Format

Share Document