Controlling the Additives in Lubricating Oil to Minimize the Pitting Failure of Gear Teeth

2015 ◽  
Vol 813-814 ◽  
pp. 959-963
Author(s):  
Kalathur Kumar ◽  
S. Arul

Literature reported extensive work on the failure of Industrial power transmission systems, during their routine torque transmission, rotary motion etc. During transmission through gear drive the noise, temperature, stresses, vibration etc are important factors to be considered. When one or more of above exceed certain design limits, the drive and its accessories must be examined for the cause and a preventive maintenance is to be followed. The latest research work carried out, in above area is reviewed. The cause of failure and failure analysis is examined. An attempt is made in this paper, to systematically analyze the modes of failures, the reasons for the same, issues and challenges involved, there in, and measures to be taken for addressing them. This analysis is likely to help the researchers to proceed further in analyzing the failure and to suggest means to prevent failure of gear power transmission systems. The major contribution of present work is, to present the common modes of failure of gear teeth in power transmission systems, and measures to be taken to address the same. In general various additives in the lubricating oil help in controlling initiation of pitting. The present work involves controlling one of the additives namely sulphur in the lubricating oil to control pitting. The present work forms an excellent basis for identifying various other parameters affecting the pitting failure of gear teeth in a gear box.

Author(s):  
Carlos. A. Duque ◽  
Leandro Manso Rodrigues Silva ◽  
Guilherme Marcio Soares ◽  
Ildemar C. Deckman ◽  
Jose Luiz R. Pereira ◽  
...  

Author(s):  
Alexandre G. Merçon ◽  
Lucas F. Encarnação ◽  
Luís F. C. Monteiro ◽  
Emanuel L. van Emmerik ◽  
Maurício Aredes

Passive filters, commonly used to attenuate non-characteristic harmonics in High Voltage Direct Current (HVDC) systems, stay at risk of disconnection from the system due to overcurrent problems. A possible solution to solve the problems involving high harmonic levels would be the use of pure active filters. However, this alternative is unpractical due to the high power of the transmission systems. This paper proposes two different topologies of hybrid filters to damp harmonic resonance in power transmission systems. The first one combines a small-rated active filter in series with passive filters, limiting overcurrents, when existent, or improving its own quality factor. The second one consists of an active filter in parallel with passive filters, which compensates all eventual overcurrent in the system bus. Both topologies utilizes the state of the art in very high power semiconductors and multilevel power converters. Simulation results present a comparative analysis, highlighting the efficiency of, and the differences between, the two proposed hybrid filters.


Sign in / Sign up

Export Citation Format

Share Document