Seismic Analysis of Confined Masonry Shear Walls Using the Wide Column Model

2016 ◽  
Vol 857 ◽  
pp. 212-218
Author(s):  
Kiran Rangwani ◽  
Svetlana Brzev

Confined Masonry (CM) structural system consists of masonry walls enclosed by reinforced concrete (RC) confining elements (tie-columns and tie-beams) and is usually supported by reinforced concrete floors and roof. This technology has been widely used for construction of low-and medium-rise buildings in Latin America, Europe, South Asia, and Middle East, and it has a proven record of good performance in damaging earthquakes. CM construction is not currently practiced in India and is not addressed by Indian design codes. Seismic analysis of CM wall panels can be performed using Wide Column Model (WCM), also known as Equivalent Frame Model. WCM is a macro model where a wall structure and the supporting floors and roof are idealized as a bare frame. CM walls can be modelled as wide columns with transformed section properties accounting for composite action of masonry and RC tie-columns. Beams in these bare frames have rigid segments simulating the effect of wall stiffness, and flexible segments that simulate the effect of floor and roof slabs. WCM has been recognized as a viable model for seismic analysis of CM buildings in Latin American countries, however this model is not well known in India. The results presented in this paper are based on linear elastic analyses of typical multi-storey CM solid walls and walls with openings. The output parameters include shear forces, bending moments, stiffness, and lateral displacements. A comparison of the results obtained using the WCM and the Finite Element Method (FEM) has been presented. WCM can be useful for seismic analysis of CM buildings since it does not require significant computational effort and can be applied using a variety of software packages.

Author(s):  
Mohamed Laissy ◽  
Mohammed Ismaeila

Nowadays, evaluation of the seismic performance of existing buildings has received great attention. This paper was carried out to study the effect of strengthening the existing reinforced concrete (RC) school buildings in Medina, Saudi Arabia through assessing the seismic performance and retrofitting where seismic analysis and design were done using equivalent static analysis method according to Saudi Building Code (SBC 301) and SAP2000 software. A Typical five-story RC school building designed according to the SBC301 has been investigated in a comparative study to determine the suitable strengthening methods such as RC shear walls and steel X-bracing methods. The results revealed that the current design of RC school buildings located in Medina was unsafe, inadequate, and unsatisfied to mitigate seismic loads. Moreover, adding steel X-bracing and RC shear walls represent a suitable strategy to reduce their seismic vulnerability.


2021 ◽  
Vol 65 (2) ◽  
pp. 63-79
Author(s):  
Ali Vatanshenas

Abstract This study discusses nonlinear modelling of a reinforced concrete wall utilizing the nonlinear layered shell approach. Rebar, unconfined and confined concrete behaviours are defined nonlinearly using proposed analytical models in the literature. Then, finite element model is validated using experimental results. It is shown that the nonlinear layered shell approach is capable of estimating wall response (i.e., stiffness, ultimate strength, and cracking pattern) with adequate accuracy and low computational effort. Modal analysis is conducted to evaluate the inherent characteristics of the wall to choose a logical loading pattern for the nonlinear static analysis. Moreover, pushover analysis’ outputs are interpreted comprehensibly from cracking of the concrete until reaching the rupture step by step.


2011 ◽  
Vol 243-249 ◽  
pp. 477-480
Author(s):  
Xiao Bin Liu ◽  
Guo Ping Chen ◽  
Ying Yang

Previous great earthquakes have performed serious structural damages to masonry structure, which also have caused great casualties and property damage, in order to enhance the structural anti-seismic class of civilian buildings, a new kind of combined structure form is introduced in the thesis, which is formed by two parts, masonry structure and special reinforced concrete shear wall structure. The reinforced concrete part can be effective in enhancing the anti-seismic performance of masonry residence, besides reinforced concrete tube structure can also become the nearest refuge when disaster occurred, even when the whole structure collapse, it can still remain relatively complete partial structures and a large space of survival. LS-DYNA, software of finite element, is used to study the structure, simulations of the response procedures of composite structure under earthquake load are made, as well as the destruction of composite structure. According to calculation and analysis, it can be known that this kind of composite structure can obviously improve seismic resistant capability, and the level of destruction is relative smaller, which can meet the requirements for fortification against earthquake that is "keeping intact in minor earthquakes, repairable in medium earthquakes, standing upright in major earthquakes"


Author(s):  
Stalin Alcívar ◽  
Yordy Mieles ◽  
Jean Pierre Ostaiza

  La ciudad de Portoviejo cuenta desde el 2017 con espectros de diseño específicos resultados del estudio de microzonificación sísmica del cantón. Esta investigación se origina por el escaso uso que se da a los espectros de diseño indicados en el estudio de microzonificación por parte de calculistas estructurales, quienes continúan usando los espectros que se indican en la Norma Ecuatoriana de la Construcción del 2015 para analizar y diseñar las estructuras, tanto de hormigón armado como de acero estructural. El objetivo de esta investigación es medir las variaciones de desplazamientos laterales y esfuerzos globales en estructuras aporticadas de hormigón armado mediante un análisis sísmico, empleando tanto los espectros de la norma ecuatoriana como los espectros de la microzonificación sísmica de Portoviejo. Se analizaron seis estructuras, tres de ellas regulares en planta y en elevación, las cuales eran de tres, cinco y ocho niveles de altura y otras tres estructuras irregulares de tres y dos niveles. Las estructuras fueron modeladas en Etabs, y se usó el análisis sísmico modal espectral en que se variaba el espectro de diseño. En cuanto a los espectros de la microzonificación se usaron los indicados para las microzonas M4 y M5 mientras que los espectros de la norma considerados corresponden a la zona sísmica VI en suelos tipo D y E consistentes con los tipos de suelo de las microzonas M4 y M5. Adicionalmente se evaluó la variación del área de aceros de refuerzo en elementos principales. De este esta investigación se puede concluir que: i) en las estructuras de dos, tres y cinco niveles, los desplazamientos se amplificaron al emplear los espectros de la microzonificación sísmica, la microzona 4 entrega el mayor valor. En la estructura de ocho niveles los espectros de la norma dan los mayores desplazamientos. ii) en la estructura de ocho niveles los mayores esfuerzos de corte y momento se presentaron al emplear los espectros de la norma ecuatoriana de la construcción. iii) al diseñar las estructuras los resultados no presentaron una variación significativa, se obtuvo una mínima diferencia en cuanto a los aceros de refuerzos longitudinales. iv) en la ciudad de Portoviejo, las estructuras construidas con frecuencia no superan los tres niveles y al ser diseñadas con los espectros de la norma se estaría subestimando la aceleración sísmica de diseño. Se recomienda el uso de los espectros de la microzonificación, que son resultado de un trabajo específico para las condiciones de la ciudad.   Palabras claves: Microzonificación Sísmica, Espectros de Diseño, Análisis Sísmico, Diseño Sísmico.   Abstract— The Portoviejo city has since 2017 with specific design spectrum results of the study of seismic microzoning in the canton. This research originates from the limited use given to the design spectrum indicated in the microzonation study by structural engineers, who continue to use the spectrum indicated in the 2015 Ecuadorian Construction Standard to analyze and design the structures, both reinforced concrete and structural steel. The objective of this investigation is to measure the variations of lateral displacements and global efforts in structures provided with reinforced concrete to be analyzed seismically using both the spectrum of the ecuadorian norms and the spectrum of the seismic microzoning of Portoviejo. Six structures were analyzed, three of them regular in plan and elevation, which were three, five and eight levels high and three other irregular structures of three and two levels. The structures were modeled in Etabs, and the spectral modal seismic analysis was used, varying the design spectrum. Regarding the microzonation spectrum, those indicated for microzones M4 and M5 were used, while the spectrum of the standard considered correspond to seismic zone VI in soils type D and E consistent with the soil types of microzones M4 and M5. Additionally, the variation of the area of reinforcement steels in main elements was evaluated. From this research it can be concluded that: i) in the structures of two, three and five levels, the displacements were amplified by using the spectrum of the seismic microzonation, the microzone 4 generated the highest value. In the eight-level structure the spectrum of the norm give the greatest displacements. ii) in the eight-level structure the greatest cutting and momentum efforts were presented when using the spectrum of the Ecuadorian construction standard. iii) when designing the structures, the results did not show a significant variation, a minimum difference was obtained regarding the longitudinal reinforcement steels. iv) in the city of Portoviejo, the structures built frequently do not exceed three levels and being designed with the spectrum of the standard would be underestimating the seismic acceleration of design. The use of microzonation spectra is recommended, which are the result of specific work for city conditions.   Keywords: Seismic microzonation, Design spectrum, Seismic Analysis, Seismic Design.


Author(s):  
V. V. Bertero ◽  
S. A. Mahin ◽  
J. Hollings

The 1972 Managua, Nicaragua earthquake was a severe test of modern earthquake resistant design and construction procedures. This paper examines the behaviour of the 18-story reinforced concrete Banco de America building which performed exceptionally well during the earthquake. Although the building suffered some structural and non-structural damage, its large, symmetrically located, coupled shear walls limited this damage to levels significantly below those observed in
more flexible structures. Several linear elastic and nonlinear analyses were conducted to evaluate the building's behaviour and determine the probable cause of the observed damage. Both static and dynamic elastic analyses were used to determine the members that would have failed and the consequence of these failures on the subsequent dynamic response. The effects of biaxial ground motions, foundation flexibility and ground motion characteristics were considered in the elastic investigations. To get a better idea of the dynamic behaviour of the principal lateral force resisting system considered in the design, nonlinear analyses were performed for the coupled shear wall cores as constructed and for the idealized case where the coupling girders were assumed to have unlimited ductility. Even code type static analyses satisfactorily identified the damaged regions. The principal design deficiency was the low shear strength of the coupling girders. However, the nonlinear results indicated that had these girders been able to develop their flexural capacity they would have suffered substantial numbers of reversals and the shear walls would have been subjected to undesirable states of stress. The analytical results as well as the building’s performance demonstrated that buildings with coupled shear walls combined with moment resisting frames offer excellent protection against seismic excitations, minimizing nonstructural damage while providing several lines of defense in the event of localized failure. Design and repair recommendations are offered.


2019 ◽  
Vol 9 (1) ◽  
pp. 61
Author(s):  
SINGH RAVIKANT ◽  
KUMAR SINGH VINAY ◽  
YADAV MAHESH ◽  
◽  
◽  
...  

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 173-180
Author(s):  
Giorgia Di Gangi ◽  
Giorgio Monti ◽  
Giuseppe Quaranta ◽  
Marco Vailati ◽  
Cristoforo Demartino

The seismic performance of timber light-frame shear walls is investigated in this paper with a focus on energy dissipation and ductility ensured by sheathing-to-framing connections. An original parametric finite element model has been developed in order to perform sensitivity analyses. The model considers the design variables affecting the racking load-carrying capacity of the wall. These variables include aspect ratio (height-to-width ratio), fastener spacing, number of vertical studs and framing elements cross-section size. A failure criterion has been defined based on the observation of both the global behaviour of the wall and local behaviour of fasteners in order to identify the ultimate displacement of the wall. The equivalent viscous damping has been numerically assessed by estimating the damping factor which is in use in the capacity spectrum method. Finally, an in-depth analysis of the results obtained from the sensitivity analyses led to the development of a simplified analytical procedure which is able to predict the capacity curve of a timber light-frame shear wall.


Sign in / Sign up

Export Citation Format

Share Document