Study on Flexural Performance of Damage RC Beams Strengthened with near Surface Mounted FRP Strips

2011 ◽  
Vol 94-96 ◽  
pp. 883-886 ◽  
Author(s):  
Chang Zhou Dong ◽  
Jian Zhong Xia

The contrast tests of 1 reinforced concrete(RC) beams and 4 RC beams strengthened with near-surface mounted carbon fiber reinforced polymer (FRP) strips have been carried out, under conditions of different damage degree of RC beams. It is mainly conducted to investigate the effects of FRP strips reinforcement of flexural strength. The experimental results indicate that significant strength on the ultimate load and rigidity of reinforced concrete beams can be realized by mounting FRP strips to the beams, and propagation of cracks were reduced obviously.

2012 ◽  
Vol 193-194 ◽  
pp. 852-854
Author(s):  
Wei Hua Chen ◽  
Mei Qin Wu

Some calculated methods of shear capacity of RC beams strengthened with NSM(near-surface mounted) CFRP(Carbon fiber reinforce polymer) rods are reviewed based on the experimental data on shear capacity of RC beams strengthened with NSM CFRP rods. Therefore, according to the destruction forms of steel reinforced concrete beam strengthened with NSM CFRP rods, the formula for calculating the shear capacity of the beam is given. The formula is expressed clearly, simple and easy to use.


2020 ◽  
Vol 323 ◽  
pp. 01008
Author(s):  
Roberto Capozucca ◽  
Erica Magagnini

Near surface mounted (NSM) technique of strengthening with FRP rods inserted in grooves on the concrete cover of damaged RC beams has been improved in recent years. The aim of this paper is the examination of the static and dynamic behaviour of undamaged and damaged reinforced concrete (RC) beams with free-free ends. RC beams strengthened with NSM Glass and Carbon fiber reinforced polymer (G-CFRP) rods have been experimentally analysed. The damage of the RC beam model was obtained by the cracking of concrete under bending tests. The detection of damage and monitoring of RC beams with and without strengthening were carried out by vibration tests assuming free-free ends at different degree of damage. Envelope diagrams of Frequency Response Functions (FRFs) obtained by the dynamic experimental tests are shown and the changes of natural frequency values are correlated to the damage degree of beam elements. Experimental results are discussed with particular emphasis on the aspect of the loss of bond.


2019 ◽  
Vol 22 (7) ◽  
pp. 1739-1754
Author(s):  
Ahmad Azim Shukri ◽  
Zainah Ibrahim ◽  
Huzaifa Hashim

The primary mode of premature failure for near-surface mounted strengthened beams is the concrete cover separation. Due to its complexity, most of the prediction methods for concrete cover separation tend to be empirical based, which can limit their usage to specific near-surface mounted strengthening configurations. In response to that, this article presents a mechanics-based design which uses the moment-rotation approach and the global energy balance approach which is less reliant on empirical formulations, as the mechanics of reinforced concrete beam such as tension stiffening and propagation of concrete cover separation debonding crack are directly simulated rather than empirically derived. The proposed design procedure was validated against published experimental results of reinforced concrete beams strengthened with near-surface mounted carbon fibre–reinforced polymer bars, near-surface mounted carbon fibre–reinforced polymer strips or side-near-surface mounted carbon fibre–reinforced polymer bars and show good accuracy. As it is less reliant on empirical formulations, the proposed design procedure should be applicable to various near-surface mounted reinforcement configurations and materials.


Sign in / Sign up

Export Citation Format

Share Document