significant strength
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 2)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 26
Author(s):  
Sumanta Chakraborty ◽  
Supratik Pal ◽  
Soumitra SenGupta

Primordial magnetic field generated in the inflationary era can act as a viable source for the present day intergalactic magnetic field of sufficient strength. We present a fundamental origin for such a primordial generation of the magnetic field, namely through anomaly cancellation of U(1) gauge field in quantum electrodynamics in the context of hilltop inflation. We have analysed at length the power spectrum of the magnetic field, thus generated, which turns out to be helical in nature. We have also found that magnetic power spectrum has significant scale-dependence giving rise to a non-trivial magnetic spectral index, a key feature of this model. Interestingly, there exists a large parameter space, where magnetic field of significant strength can be produced.


2021 ◽  
Vol 12 (1) ◽  
pp. 364
Author(s):  
Thathsarani Kannangara ◽  
Maurice Guerrieri ◽  
Sam Fragomeni ◽  
Paul Joseph

Geopolymer concrete is a valuable and alternative type of concrete that is free of traditional cement. Generally, geopolymer concretes require a source material, which is rich in silicon and aluminum. Furthermore, fly ash-based geopolymer concretes have been proven to have superior fire resistance, primarily due to their ceramic properties, and are inherently environmentally-friendly given their zero-cement content. This paper presents the effects on initial evaporation on the performance of fly ash-based geopolymer pastes after exposure to elevated temperatures of 400 °C and 800 °C. The fly ash (FA) samples used in the present study included: Gladstone and Gladstone/Callide. The results for sealed samples placed in the oven during curing were much more consistent than the samples that were not kept covered. In addition, Gladstone fly ash-based geopolymer samples that were sealed recorded an initial maximum compressive strength reading of ca. 75 MPa, while sealed Gladstone/Callide fly ash-based geopolymer samples, of the same mix design, only recorded an initial maximum compressive strength reading of ca. 50 MPa (both subjected to oven curing at 60 °C for 24 h). However, Gladstone/Callide fly ash-based geopolymer samples exhibited a significant strength gain, ca. 90 MPa, even after being subjected to 400 °C.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7596
Author(s):  
Narayanan Subash ◽  
Siva Avudaiappan ◽  
Somanathan Adish Kumar ◽  
Mugahed Amran ◽  
Nikolai Vatin ◽  
...  

The aim of this research was to find the best alternative for river sand in concrete. In both geopolymer concrete (GPC) and cement concrete (CC), the fine aggregates are replaced with various sustainable mineral ashes, and mechanical and durability tests are conducted. Specimens for tests were made of M40 grade GPC and CC, with five different soil types as river sand substitute. The materials chosen to replace the river sand are manufactured sand (M-sand), sea sand, copper slag, quarry dust, and limestone sand as 25%, 50%, 75%, and 100%, respectively by weight. GPF50 and CC50 were kept as control mixes for GPC and CC, respectively. The test results of respective concretes are compared with the control mix results. From compressive strength results, M-sand as a fine aggregate had an increase in strength in every replacement level of GPC and CC. Additionally, copper slag is identified with a significant strength reduction in GPC and CC after 25% replacement. Copper slag, quarry dust, and limestone sand in GPC and CC resulted in considerable loss of strength in all replacement levels except for 25% replacement. The cost of GPC and CC is mixed with the selected fine aggregate replacement materials which arrived. Durability and cost analyses are performed for the advisable mixes and control mixes to have a comparison. Durability tests, namely, water absorption and acid tests and water permeability and thermal tests are conducted and discussed. Durability results also indicate a positive signal to mixes with M-sand. The advisable replacement of river sand with each alternative is discussed.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6815
Author(s):  
Jean-Patrick Plassiard ◽  
Mathieu Eymard ◽  
Ibrahim Alachek ◽  
Olivier Plé

This paper investigates the mechanical contribution of an innovative coating applied on masonry wallettes compared to a traditional one. In both cases, the multifunctional coatings were insulating coatings intended for thermal refurbishment, but they could also be used to retrofit masonry. Uncoated specimens as well as coated ones were submitted to pushover tests to establish the strength gain. URM walls experienced brittle failures while the coated walls exhibited significant strength gains and strong ductility. The corresponding finite element models were developed. The behaviour of the URM walls was reproduced accurately in terms of strength and failure pattern. Models involving the coatings were used to partially retrieve the behaviour and to highlight the issues of a continuum approach.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6399
Author(s):  
Andrea Mizelli-Ojdanic ◽  
Jelena Horky ◽  
Bernhard Mingler ◽  
Mattia Fanetti ◽  
Sandra Gardonio ◽  
...  

In this study, several biodegradable Mg alloys (Mg5Zn, Mg5Zn0.3Ca, Mg5Zn0.15Ca, and Mg5Zn0.15Ca0.15Zr, numbers in wt%) were investigated after thermomechanical processing via high-pressure torsion (HPT) at elevated temperature as well as after additional heat treatments. Indirect and direct analyses of microstructure revealed that the significant strength increases arise not only from dislocations and precipitates but also from vacancy agglomerates. By contrast with former low-temperature processing routes applied by the authors, a significant ductility was obtained because of temperature-induced dynamic recovery. The low initial values of Young’s modulus were not significantly affected by warm HPT-processing. nor by heat treatments afterwards. Also, corrosion resistance did not change or even increase during those treatments. Altogether, the study reveals a viable processing route for the optimization of Mg alloys to provide enhanced mechanical properties while leaving the corrosion properties unaffected, suggesting it for the use as biodegradable implant material.


2021 ◽  
Author(s):  
Il'ya Medvedev ◽  
D. Vorotnikov

Russia has significant reserves of low-value soft deciduous wood (birch, aspen, alder, poplar), which are practically not processed, the wood rots in the forest and in the lower warehouses. Wood is a good and widespread building material. Due to the significant strength, low volume weight, ease of processing, ease of manufacturing and assembly of structures, wood has long been used for the construction of bridges. At present, despite the widespread use of reinforced concrete bridges, in the forest-rich northern and eastern regions of Russia, wooden bridges can be very useful on logging roads. But wooden bridges have a number of significant drawbacks: they have a short service life, are subject to rot, are not fire-resistant, and do not meet the requirements for passing modern loads. In order to ensure the safe and uninterrupted transport of timber on logging roads, special attention should be paid to the construction material for the construction of bridges. The proposed construction material is based on low-value soft hardwood, has high performance characteristics. To improve the performance of the wood, it is necessary to impregnate it-giving it the desired properties and compress it-thereby increasing the density, hardness and strength. We have developed a technology that combines three main technological operations of wood modification: impregnation, pressing and drying, while allowing us to obtain a structural material with increased performance characteristics, suitable for the manufacture of load-bearing supports, as well as beams of wooden bridges on logging roads.


2021 ◽  
Vol 18 (1) ◽  
pp. 12-19
Author(s):  
Dr. Sherif El-Gamal ◽  
Abdulrahman M. Al-Fahdi ◽  
Mohammed Meddah ◽  
Abdullah Al-Saidy ◽  
Kazi Md Abu Sohel

This research study investigates the flexural behavior of fiber reinforced polymer (FRP) bars after being subjected to different levels of elevated temperatures (100, 200 and 300°C). Three types of glass FRP bars (ribbed, sand coated, and helically wrapped) and one type of carbon FRP bars (sand coated) were used in this study. Two testing scenarios were used: a) testing specimens immediately after heating and b) keeping specimens to cool down before testing. Test results showed that as the temperature increased the flexural strength and modulus of the tested FRP bars decreased. At temperatures higher than the glass transition temperature (Tg), significant flexural strength and modulus losses were recorded. Smaller diameter bars showed better residual flexural strength and modulus than larger diameter bars. The immediately tested bars showed significant strength and modulus losses compared to bars tested after cooling. Different types of GFRP bars showed comparable results. However, the helically wrapped bars showed the highest flexural strength losses (37 and 60%) while the sand coated bars showed the lowest losses (29 and 39%) after exposure to 200 and 300℃, respectively. The carbon FRP bars showed residual flexural strengths comparable to those recorded for the GFRP bars; however, they showed lower residual flexural modulus after being subjected to 200 and 300℃.


2021 ◽  
Author(s):  
John Bedford ◽  
Daniel Faulkner ◽  
Nadia Lapusta

Geological heterogeneity is abundant in crustal fault zones; however, its role in controlling the mechanical behaviour of faults is poorly constrained. Here, we present laboratory friction experiments on laterally heterogeneous faults, with patches of strong, rate-weakening quartz gouge and weak, rate-strengthening clay gouge. The experiments show that the heterogeneity leads to a significant strength reduction and decrease in frictional stability in comparison to compositionally identical faults with homogeneously mixed gouges typically used in the lab. We identify a combination of weakening effects, including smearing of the weak clay; differential compaction of the two gouges redistributing normal stress; and shear localization producing stress concentrations in the strong quartz patches. The results demonstrate that small-scale geological heterogeneity has pronounced effects on fault strength and stability, and by extension on the occurrence of slow-slip transients versus earthquake ruptures and the characteristics of the resulting events, and should be incorporated in lab experiments, fault friction laws, and earthquake source modelling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oliver Loveday ◽  
Jorge Echeverría

AbstractIt is well known that, under certain conditions, C(sp3) atoms behave, via their σ-hole, as Lewis acids in tetrel bonding. Here, we show that methyl groups, when bound to atoms less electronegative than carbon, can counterintuitively participate in noncovalent interactions as electron density donors. Thousands of experimental structures are found in which methyl groups behave as Lewis bases to establish alkaline, alkaline earth, triel, tetrel, pnictogen, chalcogen and halogen bonds. Theoretical calculations confirm the high directionality and significant strength of the interactions that arise from a common pattern based on the electron density holes model. Moreover, despite the absence of lone pairs, methyl groups are able to transfer charge from σ bonding orbitals into empty orbitals of the electrophile to reinforce the attractive interaction.


Author(s):  
Matthew N. Rush ◽  
Christina Salas ◽  
Lorraine Mottishaw ◽  
Damian Fountain ◽  
Deana Mercer

Abstract Background Ligament reconstruction, as a surgical method used to stabilize joints, requires significant strength and tissue anchoring to restore function. Historically, reconstructive materials have been fraught with problems from an inability to withstand normal physiological loads to difficulties in fabricating the complex organization structure of native tissue at the ligament-to-bone interface. In combination, these factors have prevented the successful realization of nonautograft reconstruction. Methods A review of recent improvements in additive manufacturing techniques and biomaterials highlight possible options for ligament replacement. Description of Technique In combination, three dimensional-printing and electrospinning have begun to provide for nonautograft options that can meet the physiological load and architectures of native tissues; however, a combination of manufacturing methods is needed to allow for bone-ligament enthesis. Hybrid biofabrication of bone-ligament tissue scaffolds, through the simultaneous deposition of disparate materials, offer significant advantages over fused manufacturing methods which lack efficient integration between bone and ligament materials. Results In this review, we discuss the important chemical and biological properties of ligament enthesis and describe recent advancements in additive manufacturing to meet mechanical and biological requirements for a successful bone–ligament–bone interface. Conclusions With continued advancement of additive manufacturing technologies and improved biomaterial properties, tissue engineered bone-ligament scaffolds may soon enter the clinical realm.


Sign in / Sign up

Export Citation Format

Share Document