High Pressure Structural Phase Transition and Elastic Properties of Europium Chalcogenides

2014 ◽  
Vol 1047 ◽  
pp. 163-169
Author(s):  
Ashvini K. Sahu ◽  
M. Aynyas ◽  
R. Bhardwaj ◽  
Sankar P. Sanyal

The high pressure induced structural phase transition and elastic properties of three Europium chalcogenides (EuX; X = S, Se, Te) have been studied using a two body potential approach. The calculated compression curves of EuS, EuSe and EuTe obtained so has been compared with recently measured three body potential data. The calculated transition pressures are in good agreement with the experimental data. The phase transition pressure for EuS, EuSe and EuTe going from the NaCl phase to CsCl phase have been observed are 22 GPa, 15 GPa, 10 GPa respectively, close the theoretical and experimental data. We have also calculated bulk modulas and second order elastic constants at high pressure which show partly ionic nature of theses compounds. The B1 (NaCl) phase is found to be higher in energy than the B2 (CsCl) phase and more stable at zero pressure.

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Purvee Bhardwaj

The high-pressure structural phase transition of semiconductor PbS has been investigated, using the three body potential (TBP) model. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and related volume collapses obtained from this model show a generally good agreement with available results. Moreover, the elastic properties of PbS are also investigated.


2004 ◽  
Vol 77 (12) ◽  
pp. 1075-1091 ◽  
Author(s):  
Dinesh Varshney ◽  
N. Kaurav ◽  
P. Sharma ◽  
S. Shah ◽  
R.K. Singh

2015 ◽  
Author(s):  
Y. S. Panwar ◽  
Ashok K. Ahirwar ◽  
Mahendra Aynyas ◽  
S. P. Sanyal

Open Physics ◽  
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Purvee Bhardwaj ◽  
Sadhna Singh ◽  
Neeraj Gaur

AbstractIn the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.


RSC Advances ◽  
2017 ◽  
Vol 7 (50) ◽  
pp. 31433-31440 ◽  
Author(s):  
Rui Zhao ◽  
Tianye Yang ◽  
Yang Luo ◽  
Mingyan Chuai ◽  
Xiaoxin Wu ◽  
...  

Eu dopant increases the phase transition pressure from wurtzite to rocksalt structure compared with CdS nanoparticles. The PL peaks of the Eu3+ ions can used as pressure probe after the quenching of the PL peaks of rocksalt structure CdS.


Sign in / Sign up

Export Citation Format

Share Document