A 1D Analysis of Nano Multiferroic Composites for the Novel Read Head Technology

2014 ◽  
Vol 1052 ◽  
pp. 149-154 ◽  
Author(s):  
Salinee Choowitsakunlert ◽  
Thanatcha Satitchantrakul ◽  
Rardchawadee Silapunt

The magnetoelectric (ME) effect induced in a multiferroic composite is potentially a key to improve the performance of the nanoread head in the future magnetic recording device. In this paper, the analysis of the 1-dimensional (1D) L-T mode model containing sandwiched structures of Terfenol-D/Lead zirconate titanate (PZT)/Terfenol-D nanomultiferroic composites is performed. The magnetostriction process is described using the 1D standard square law. The magnetoelectric coupling is then investigated. The piezoelectric response on the applied dc magnetic field and PZT to Terfenol-D thickness (tp:tm) ratio, is determined. The optimal electric field and potential across the PZT layer are achieved at 1.3:1 thickness ratio. The result agrees well with the associated magnetic field-induced strain profile. The peak ME coefficient is found at 1.37:1 thickness ratio.

Author(s):  
Salinee Choowitsakunlert ◽  
Rardchawadee Silapunt ◽  
Hideki Yokoi

This paper presents a study of the effect of antiferromagnetic (AFM) integration on the nano AFM-pinned multiferroic (MF) composites structure. The nano MF composites structure is a potential candidate for a future magnetic read head. The simulation of the AFM/ferromagnetic (FM) bilayers characteristics and the evaluation of the magnetoelectric (ME) effect induced in the 1-dimensional (1D) L-T mode model of AFM-pinned structure of AFM/FM/Ferroelectric (FE)/FM/AFM are performed. FM, FE, and two types of AFM materials are Terfenol-D, lead zirconate titanate (PZT), and PtMn and Cr2O3, respectively. The magnetoelectric (ME) effect is investigated using the 1D standard square law. Magnetic-field induced strain in the FM layer, piezoelectric response of the PZT layer, and the ME coefficient are determined. Specifically, the influence of AFM on the MF composites structure for various AFM thicknesses is of interest. It is found that the maximum electric field and potential across the PZT layer are achieved at 2.7 nm thick of PtMn. The result is well agreed by associated magnetic field-induced strain and ME coefficient.


Author(s):  
Treetep Saengow ◽  
Salinee Choowitsakunlert ◽  
Rardchawadee Silapunt

AbstractThis paper describes the magnetoelectric (ME) coupling behavior of the nano bi-layer L-T (longitudinal-transverse) mode bar structure through the ME coefficient mathematical model that is developed in high frequency regime. Terfenol-D and Lead Zirconate Titanate (PZT) are used as ferromagnetic (FM) and ferroelectric (FE) layers, respectively. The ME coefficients are determined at different layer thickness ratios and products of the operating frequency (f) and structure length (l). It is found that the ME coefficient and optimal thickness ratio increases and decreases exponentially respectively, with fl. The minimum and maximum peak ME coefficients at fl values of 0.1 and 1,200 respectively, are around 1,756 and 5,617 mV/Oe$$\cdot $$ · cm with the optimal thickness ratio of 0.43 and 0.19, respectively. The ME coupling behavior depends largely on the magnetostrictive effect in the FM layer that is altered by the applied magnetic field and fl. The demonstration as the read sensor for the hard disk drive (HDD) with 2 Tbit/in2 areal density and 190 Oe/bit applied magnetic field shows the output voltage across the FE layer of around 0.43 mV, which is more than sufficient for the raw signal readback.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


2015 ◽  
Vol 233-234 ◽  
pp. 357-359 ◽  
Author(s):  
Dmitry Burdin ◽  
Dmitry Chashin ◽  
Nikolay Ekonomov ◽  
Yuri Fetisov

Temperature characteristics of resonant magnetoelectric effect in bilayer structures consisting of langatate, lead zirconate titanate, nickel, and amorphous ferromagnetic Metglas layers have been investigated. The measurements were performed in the temperature range of 150-400 K. The influence of the ferromagnetic and piezoelectric layer’s parameters on the temperature dependence of resonant frequency and magnetoelectric coefficient αE has been demonstrated. The results can be used to develop magnetoelectric magnetic field sensors.


2002 ◽  
Vol 748 ◽  
Author(s):  
Takashi Iijima ◽  
Sachiko Ito ◽  
Hirofumi Matsuda

ABSTRACTEffects on ferroelectric and piezoelectric properties of top-electrode diameter variance from 80 to 8 μm were investigated using an AFM probing system connected with a ferroelectric test system with bipolar and unipolar signals at 5 Hz. The Pt and 1.2-μm-thick PZT layers were etched off to prepare Pt top electrode etched samples or Pt/PZT stack etched samples. In the case of bipolar measurement, the top electrode diameter did not affect ferroelectric properties, while the maximum displacement of the butterfly-shaped hysteresis curve, related with piezoelectric response, increased with decreasing top-electrode diameter. On the other hand, the longitudinal piezoelectric constant, AFM d33, calculated from the strain curve slope at 5 Hz, +5 V, increased with decreasing top-electrode diameter. The average value of the Pt/PZT stack-etched AFM d33 almost equals that of Pt-etched AFM d33. Average AFM d33 of the 8-μm-diameter Pt-etched and Pt/PZT stack-etched samples are 129 and 135 pm/V, respectively.


Sign in / Sign up

Export Citation Format

Share Document