Flexible Graphene Paper as a Binder-Free Anode Material for Lithium Ion Batteries

2015 ◽  
Vol 1095 ◽  
pp. 333-340
Author(s):  
Chuan Ning Yang ◽  
Yong Quan Qing ◽  
Chang Sheng Liu

Graphene paper (GP) with layered structure and highly conductive network is fabricated by a facile technique of vacuum filtration and studied as a single-component and binder-free anode of lithium ion batteries (LIBs). The process of fabrication of GP without any binder and high-temperature treatment, in the meantime, great improvement in both the capacity and cycling performance of the GP electrodes have compared with other kinds of traditional graphite electrode materials. Given the simplifying anode fabrication, low manufacturing costs and many electrochemical properties of the GP anode, it is regarded as an excellent anode material of LIB with great promise for its both excellent cycling performance and electrochemical properties. The specific capacity can reach to over 200 mAhg-1after 60 charge-discharge cycles under the current rate of 50 mAg-1.

RSC Advances ◽  
2016 ◽  
Vol 6 (19) ◽  
pp. 15492-15500 ◽  
Author(s):  
Zhanyu Li ◽  
Jianling Li ◽  
Yuguang Zhao ◽  
Kai Yang ◽  
Fei Gao ◽  
...  

Sm doping has a great impact on discharge capacity, rate capability and cycling performance of LTO anode materials for lithium-ion batteries.


2006 ◽  
Vol 972 ◽  
Author(s):  
Haiming Xie ◽  
Haiying Yu ◽  
Abraham F. Jalbout ◽  
Guiling Yang ◽  
Xiumei Pan ◽  
...  

AbstractWe design a way that the anode hosts provide lithium ion in lithium ion battery operation. If the limiting factors of the cathode materials are less, there will be more alternatives for it. It was proven to be successful by two kinds of test cells based on LixCn as anode material, and β-FeOOH or Cr8O21 as cathode materials. Their theoretical capacities are much higher than those present electrode materials. Unlike the lithium secondary batteries with lithium metal foil or lithium alloy as anode, this type of lithium ion batteries with LixCn as anode prohibit dendrite formation during charging-discharge process. The idea of lithium ion sources coming from the anode can come true successfully as a result that steady protecting solution be sought for LixCn.


2017 ◽  
Vol 85 (10) ◽  
pp. 630-633 ◽  
Author(s):  
Ayuko KITAJOU ◽  
Shinji KUDO ◽  
Jun-ichiro HAYASHI ◽  
Shigeto OKADA

2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


2015 ◽  
Vol 3 (2) ◽  
pp. 586-592 ◽  
Author(s):  
Malin Li ◽  
Xu Yang ◽  
Chunzhong Wang ◽  
Nan Chen ◽  
Fang Hu ◽  
...  

LiCuVO4, as an intercalation-type anode, shows spontaneous coating behavior with Cu nanoparticles on the surface of Li3VO4 after the 1st discharge.


2011 ◽  
Vol 197-198 ◽  
pp. 1113-1116 ◽  
Author(s):  
Wen Li Yao ◽  
Jin Qing Chen ◽  
An Yun Li ◽  
Xin Bing Chen

The platelike Co3O4/carbon nanofiber (CNF) composite materials were synthesized by the calcination of β-Co(OH)2/CNF precursor prepared by a surfactant-free hydrothermal method. As negative electrode materials for lithium-ion batteries, the platelike Co3O4/CNF composites can deliver a high reversible capacity of 900 mAh g-1 for a life extending over hundreds of cycles at a current density of 100 mA g-1. The high Li-storage capacity and excellent cycling performance for Co3O4/CNF composite materials may mainly attribute to the beneficial effect of the CNFs addition on enhancing structural stability and electrical conductivity of Co3O4 platelets.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


2010 ◽  
Vol 26 (12) ◽  
pp. 3187-3192 ◽  
Author(s):  
ZHOU Xiao-Ling ◽  
◽  
HUANG Rui-An ◽  
WU Zhao-Cong ◽  
YANG Bin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document