LixCn as Anode Material for Lithium Ion Batteries

2006 ◽  
Vol 972 ◽  
Author(s):  
Haiming Xie ◽  
Haiying Yu ◽  
Abraham F. Jalbout ◽  
Guiling Yang ◽  
Xiumei Pan ◽  
...  

AbstractWe design a way that the anode hosts provide lithium ion in lithium ion battery operation. If the limiting factors of the cathode materials are less, there will be more alternatives for it. It was proven to be successful by two kinds of test cells based on LixCn as anode material, and β-FeOOH or Cr8O21 as cathode materials. Their theoretical capacities are much higher than those present electrode materials. Unlike the lithium secondary batteries with lithium metal foil or lithium alloy as anode, this type of lithium ion batteries with LixCn as anode prohibit dendrite formation during charging-discharge process. The idea of lithium ion sources coming from the anode can come true successfully as a result that steady protecting solution be sought for LixCn.

2015 ◽  
Vol 1095 ◽  
pp. 333-340
Author(s):  
Chuan Ning Yang ◽  
Yong Quan Qing ◽  
Chang Sheng Liu

Graphene paper (GP) with layered structure and highly conductive network is fabricated by a facile technique of vacuum filtration and studied as a single-component and binder-free anode of lithium ion batteries (LIBs). The process of fabrication of GP without any binder and high-temperature treatment, in the meantime, great improvement in both the capacity and cycling performance of the GP electrodes have compared with other kinds of traditional graphite electrode materials. Given the simplifying anode fabrication, low manufacturing costs and many electrochemical properties of the GP anode, it is regarded as an excellent anode material of LIB with great promise for its both excellent cycling performance and electrochemical properties. The specific capacity can reach to over 200 mAhg-1after 60 charge-discharge cycles under the current rate of 50 mAg-1.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
JiPing Zhu ◽  
GuangShun Xiao ◽  
XiuXiu Zuo

AbstractTwo-dimensional black phosphorus (2D BP), an emerging material, has aroused tremendous interest once discovered. This is due to the fact that it integrates unprecedented properties of other 2D materials, such as tunable bandgap structures, outstanding electrochemical properties, anisotropic mechanical, thermodynamic, and photoelectric properties, making it of great research value in many fields. The emergence of 2D BP has greatly promoted the development of electrochemical energy storage devices, especially lithium-ion batteries. However, in the application of 2D BP, there are still some problems to be solved urgently, such as the difficulty in the synthesis of large-scale high-quality phosphorene, poor environmental stability, and the volume expansion as electrode materials. Herein, according to the latest research progress of 2D BP in the field of energy storage, we systematically summarize and compare the preparation methods of phosphorene and discuss the basic structure and properties of BP, especially the environmental instability and passivation techniques. In particular, the practical application and challenges of 2D BP as anode material for lithium-ion batteries are analyzed in detail. Finally, some personal perspectives on the future development and challenges of BP are presented.


Author(s):  
Cheng-Kai ChiuHuang ◽  
Hsiao-Ying Shadow Huang

The development of lithium-ion batteries plays an important role to stimulate electric vehicle (EV) and plug-in electric vehicle (PHEV) industries and it is one of many solutions to reduce US oil import dependence. To develop advanced vehicle technologies that use energy more efficiently, retaining the lithium-ion battery capacity is one of major challenges facing by the electrochemical community today. During electrochemical processes, lithium ions diffuse from and insert into nanoscaled cathode materials in which stresses are formed. It is considered that diffusion-induced stress is one of the factors causing electrode material capacity loss and failure. In this study, we present a model which is capable for describing diffusion mechanisms and stress formation in nano-platelike cathode materials, LiFePO4 (Lithium-iron-phosphate). We consider particle size >100 nm in this study since it has been suggested that very small nanoparticles (<100 nm) may not undergo phase separation during fast diffusion. To evaluate diffusion-induced stress accurately, factors such as the diffusivity and phase boundary movements are considered. Our result provides quantitative lithium concentrations inside LiFePO4 nanoparticles. The result could be used for evaluating stress formation and provides potential cues for precursors of capacity loss in lithium-ion batteries. This study contributes to the fundamental understanding of lithium ion diffusion in electrode materials, and results from this model help better electrode materials design in lithium-ion batteries.


RSC Advances ◽  
2021 ◽  
Vol 11 (47) ◽  
pp. 29247-29266
Author(s):  
Rimsha Mehek ◽  
Naseem Iqbal ◽  
Tayyaba Noor ◽  
M. Zain Bin Amjad ◽  
Ghulam Ali ◽  
...  

In this review article, a comprehensive insight is given into current progress of electrochemical evaluation of MOFs based material as efficient anode and cathode materials for LIBs.


2021 ◽  
Vol 233 ◽  
pp. 01020
Author(s):  
Kaijia Lu ◽  
Chuanshan Zhao ◽  
Yifei Jiang

Lithium-ion batteries have attracted widespread attention as new energy storage materials, and electrode materials, especially cathode materials, are the main factors affecting the electrochemical performance of lithium-ion batteries, and they also determine the cost of preparing lithium-ion batteries. In recent years, there have been a lot of researches on the selection and modification of cathode materials based on lithium-ion batteries to continuously optimize the electrochemical performance of lithium-ion batteries. This article introduces the research progress of cathode materials for lithium ion batteries, including three types of cathode materials (layer oxide, spinel oxide, polyanionic compound) and three modification methods (doping modification, surface coating modification, nano modification method), and prospects for the future development of lithium ion battery cathode materials.


2019 ◽  
Vol 11 (8) ◽  
pp. 2363 ◽  
Author(s):  
Guangwen Zhang ◽  
Zhongxing Du ◽  
Yaqun He ◽  
Haifeng Wang ◽  
Weining Xie ◽  
...  

The recovery of cathode and anode materials plays an important role in the recycling process of spent lithium-ion batteries (LIBs). Organic binders reduce the liberation efficiency and flotation efficiency of electrode materials derived from spent LIBs. In this study, pyrolysis technology is used to improve the recovery of cathode and anode materials from spent LIBs by removing organic binders. Pyrolysis characteristics of organics in electrode materials are investigated, and on this basis, the effects of pyrolysis parameters on the liberation efficiency of electrode materials are studied. Afterwards, flotation technology is used to separate cathode material from anode material. The results indicate that the optimum liberation efficiency of electrode materials is obtained at a pyrolysis temperature of 500 °C, a pyrolysis time of 15 min and a pyrolysis heating rate of 10 °C/min. At this time, the liberation efficiency of cathode materials is 98.23% and the liberation efficiency of anode materials is 98.89%. Phase characteristics of electrode materials cannot be changed under these pyrolysis conditions. Ultrasonic cleaning was used to remove pyrolytic residues to further improve the flotation efficiency of electrode materials. The cathode material grade was up to 93.89% with a recovery of 96.88% in the flotation process.


2013 ◽  
Vol 705 ◽  
pp. 46-51 ◽  
Author(s):  
Anatoly Klenushkin ◽  
Boris Medvedev ◽  
Yuri Kabirov ◽  
Mikhail Evdokimov

New iron cathode materials: strontium hexaferrite, spinel-like ferrites of copper, lithium, and zinc, as well as α-and γ-phases of iron (3+) oxide are proposed. Chronopotentiometry method allowed demonstrating the possibility to use ferrites and iron (3+) oxides as the positive electrode materials for lithium batteries.


2020 ◽  
Vol 9 (1) ◽  
pp. 1610-1624
Author(s):  
Xinxia Yang ◽  
Yi Peng ◽  
Jia Hou ◽  
Yifan Liu ◽  
Xian Jian

Abstract As the most common energy storage technology on the market, lithium-ion batteries are widely used in various industries and have a profound impact on our daily lives, with the characteristics of high voltage, high capacity, good safety performance, and long cycle life. Lithium metal was first used in the anode of lithium-ion batteries. However, the inherent growth of lithium dendrites and the instability of the SEI film limit the practical application of lithium metal materials. Despite this, lithium metal is still an ideal anode material to meet the growing demands for electronic equipment and electric vehicles due to its extremely high theoretical specific capacity, low density, and the lowest negative electrochemical potential. With the urgent need to develop new energy storage technologies, the research on lithium metal anodes has once again received extensive attention. In this review, the research progress in the modification of composite lithium metal electrode materials is summarized, including lithium/alloy composite electrode, lithium/carbon-based materials composite electrode and artificial SEI film. The possible directions for future development of lithium metal electrode are also prospected.


Sign in / Sign up

Export Citation Format

Share Document