Preparation of Zeolite from Waterworks Sludge for Ammonium Ion Removal in Wastewater

2015 ◽  
Vol 1095 ◽  
pp. 355-358
Author(s):  
Chun Xia Zhao ◽  
Chun Hui Zhang ◽  
Tan Meng ◽  
Shan Shan Han ◽  
Jia Yu Jiang ◽  
...  

An appropriate disposal technology should be developed for a mass of waterworks sludge (WWS) as the solid waste. While, it can be used to produce zeolite, containing a lot of aluminum and silicate elements. In addition, the synthetic zeolite was widely used because of smaller particle size and higher purity than clinoptilolite. Therefore, the WWS and sodium hydroxide were adopted as raw material; the synthetic zeolite was used as seed crystals to obtain WWS zeolite by induce crystallization, under normal pressure at 125 ºC. The adsorption and exchange capacity of WWS zeolite was 18.3 mg/g when the initial concentration of ammonium ion was 100 mg/L in wastewater.

2010 ◽  
Vol 18 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Aušra Mažeikienė ◽  
Marina Valentukevičienė ◽  
Juozas Jankauskas

Experimental investigation of ammonium ion removal from drinking water were carried out using natural zeolite (clinoptilolite) fractions of 0.3–0.6 mm and 0.6–1.5 mm. Before using natural zeolite was washed and dried in an oven at a temperature of about 105 °C. Solutions with different ion power (solution 1 ‐ supplied tap water and NH4Cl, solution 2 — distillate water and NH4Cl; initial concentration of ammonium ions of 2 mg/l) were filtrated through an experimental filter column packed with 70 mm and 210 mm of zeolite media for comparison purposes. Comparing the results for different natural zeolite fractions it was determined that the removal is more efficient using a finer fraction. After filtering 30 l of solution 1 through the laboratory‐ scaled filter column packed with 70 mm height of 0.3–0.6 mm particle size zeolite media and 0.6–1.5 mm particle size, the efficiency fluctuated from 89% to 70% (finer particles) and from 94% to 54% (coarser particles). Comparing the efficiency of ammonium ion removal from solutions with different ion power (solution 1 and solution 2), it was noticed that concentration reached the limit of 0.5 mg/l in the 12th l of solution 1, whereas it was fifty times lower in the 12th l of solution 2. After filtering 10 l of filtrate through the filter media with the height of 210 mm using coarse particles, the efficiency of ammonium ion removal reached 84%. Santrauka Eksperimentiniai NH4 + šalinimo laboratorijos salygomis iš ruošiamo geriamojo vandens tyrimai buvo atlikti naudojant gamtinio ceolito (klinoptilolito) 0,3–0,6 mm ir 0,6—1,5 mm stambumo frakcijas. Prieš naudojant gamtinis ceolitas buvo išplautas ir išdžiovintas krosnyje apie 105 °C temperatūroje. Pro eksperimentinio filtro ceolito užpildus (užpildo aukštis pirmuoju atveju buvo 70 mm, antruoju ‐ 210 mm) 5 m/h greičiu praleisti skirtingos jonines jegos tirpalai (iš vandentiekio vandens bei NH4Cl (I) ir iš distiliuoto vandens bei NH4Cl (II) pasigaminti tirpalai, kuriuose pradinD amonio jonu koncentracija buvo 2,0 mg/l). Lyginant dvieju skirtingu gamtinio ceolito frakciju eksperimento rezultatus nustatyta, kad smulkesne frakcija efektyviau iš tirpalu šalina NH4 +. Prafiltravus po 30 litru pirmojo tirpalo pro dvi 70 mm aukščio skirtingo ceolito grūdeliu stambumo frakcijas, amonio jonu šalinimo iš tirpalo efektyvumas kito atitinkamai nuo 89 % iki 70 % (esant smulkesnei frakcijai) ir nuo 94 % iki 54 % (kai frakcija stambesne). Lyginant amonio jonu šalinimo iš skirtingos jonines jegos tirpalu efektyvuma pastebeta, kad 0,5 mg/l amonio jonu koncentracija pirmojo tirpalo filtrate pasiekta jau dvyliktajame filtrato litre, o antrojo (II) tirpalo filtrato dvyliktajame litre ji buvo 50 kartu mažesne. Prafiltravus pro rege‐neruota 210 mm aukščio 0,6–1,5 mm stambumo ceolito grūdeliu užpilda 10 litru pirmojo tirpalo, amonio jonu šalinimo iš tirpalo efektyvumas sieke 84 %. Резюме Экспериментальные исследования очистки питьевой воды от ионов аммония проводились в лабораторных условиях, используя природный цеолит (клиноптилолит) с содержанием фракции 0,3–0,6 мм и 0,6–1,5 мм. Перед использованием природный цеолит был промыт и высушен в печи при температуре 105 0C. Растворы различного ионного заряда (1-й раствор из водопроводной воды и NH4Cl и 2-й раствор из дистиллированной воды и NH4Cl, в которых первичная концентрация ионов аммония была 2,0 мг/л) были пропущены через цеолитовую загрузку экспериментального фильтра со скоростью 5 м/ч (высота загрузки в первом случае составляла 70 мм, во втором – 210 мм). При сравнении результатов эксперимента с двумя различными фракциями природного цеолита обнаружено, что мелкозернистая фракция эффективнее очищает растворы от NH4+. После фильтрования 30 л первичного раствора обеими фракциями различной зернистости цеолита эффективность очистки раствора от ионов аммония достигала соответственно от 70% до 89% (мелкозернистой фракции) и от 54% до 94% (крупнозернистой фракции). При сравнении результатов удаления ионов аммония из 1-го и 2-го растворов с разными ионными зарядами в 12-м литре 1-го раствора была обнаружена концентрация ионов аммония в 0,5 мг/л, что в 50 раз меньше, чем в 12-м литре профильтрованного 2-го раствора. После того, как было профильтровано 10 л первого раствора через регенерированную цеолитовую загрузку высотой в 210 мм (фракция 0,6–1,5 мм), эффект очистки раствора от ионов аммония достигал 84 %.


2020 ◽  
Vol 24 (5) ◽  
pp. 1395-1399 ◽  
Author(s):  
Yuki Kamimoto ◽  
Takeshi Hagio ◽  
Yong-Jun Jung ◽  
Ryoichi Ichino ◽  
Kyungik Gil

2011 ◽  
Vol 183-185 ◽  
pp. 1558-1562 ◽  
Author(s):  
Qiong Qiong Liu ◽  
Xin Tan ◽  
Lin Zhao

Washed kaolin produced in Maoming, Guangzhou was used as the raw material and NaOH and NaAlO2were used as the modifiers to prepare a high-performance deaminating material by providing kaolin with sodium-type exchange groups through modification and calcination. Then the ammonia ion exchange capacity of this material was studied by means of Cation Exchange Capacity (CEC) determination. Research has also been done on the conditions for the preparation of this material, the factors that influence the result of the removal of ammonia nitrogen from water by this material, and the ammonia nitrogen removal rate of this material. In this study , an extruding-rounding process to make the powder material into 1-2mm grains and studied the forming process of the grains. Research results show that: The ammonia exchange capacity of the prepared material was greater than 70 mg NH4+-N/g. Laboratory static ammonia nitrogen experiment showed that the high-performance ammonia deaminating material could remove 90% of the ammonia nitrogen from water and were qualified for the removal of ammonia nitrogen in water treatment processes. Through the establishment of Pseudo-first reaction kinetic model and Pseudo-second reaction kinetic model of modified of kaolin absorption on NH4+, we can see that the adsorption of ammonia nitrogen in water by this ammonium ion-exchange material matches the pseudo-second-order reaction.


1995 ◽  
Vol 18 (1-2) ◽  
pp. 35-50 ◽  
Author(s):  
Masatoshi Matsumura ◽  
Fidel Rey P. Nayve

2011 ◽  
Vol 50 (10) ◽  
pp. 6391-6403 ◽  
Author(s):  
Ayşe Çeçen Erbil ◽  
Elif Soyer ◽  
Bilsen Beler Baykal

1999 ◽  
Vol 22 (10) ◽  
pp. 845-853 ◽  
Author(s):  
Yasuyuki OHMORI ◽  
Yoshihiko HOSOI ◽  
Minoru OKUMURA ◽  
Kaoru FUJINAGA ◽  
Yasushi SEIKE

Sign in / Sign up

Export Citation Format

Share Document