Mechanical Testing of GFRP Composite Materials Used in Wind Turbine Blades Construction

2020 ◽  
Vol 1157 ◽  
pp. 142-148
Author(s):  
Ciprian Morăraș ◽  
Catalin Andrei Tugui ◽  
Rozina Steigmann ◽  
Paul Doru Barsanescu ◽  
Bogdan Leitoiu ◽  
...  

The paper proposes to present the results of the evaluation of glass fiber reinforced plastics (GFRP) used in the construction of wind turbine blades. In a wind turbine, the blades are the most exposed to damages and the defects which appear are various and are connected with the type of manufacture, simple/complex loading, environmental conditions etc. In order to increase the lifetime span and to analyze the degradation phenomena during the materials functioning, destructive evaluation tests are performed to determine the mechanical property, by testing pure shear on specimens Iosipescu, from GFRP with woven reinforcement at [± 45°] and [0°/90°], with the shear fixture, endowment of Technical University Gh.Asachi Iasi.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 622
Author(s):  
Yasser Elhenawy ◽  
Yasser Fouad ◽  
Haykel Marouani ◽  
Mohamed Bassyouni

This study aims to evaluate the effect of functionalized multi-walled carbon nanotubes (MWCNTs) on the performance of glass fiber (GF)-reinforced polypropylene (PP) for wind turbine blades. Support for theoretical blade movement of horizontal axis wind turbines (HAWTs), simulation, and analysis were performed with the Ansys computer package to gain insight into the durability of polypropylene-chopped E-glass for application in turbine blades under aerodynamic, gravitational, and centrifugal loads. Typically, polymer nanocomposites are used for small-scale wind turbine systems, such as for residential applications. Mechanical and physical properties of material composites including tensile and melt flow indices were determined. Surface morphology of polypropylene-chopped E-glass fiber and functionalized MWCNTs nanocomposites showed good distribution of dispersed phase. The effect of fiber loading on the mechanical properties of the PP nanocomposites was investigated in order to obtain the optimum composite composition and processing conditions for manufacturing wind turbine blades. The results show that adding MWCNTs to glass fiber-reinforced PP composites has a substantial influence on deflection reduction and adding them to chopped-polypropylene E-glass has a significant effect on reducing the bias estimated by finite element analysis.


2011 ◽  
Vol 21 (8) ◽  
pp. 1227-1244 ◽  
Author(s):  
V. A. Nagarajan ◽  
S. Sundaram ◽  
K. Thyagarajan ◽  
J. Selwin Rajadurai ◽  
T. P. D. Rajan

Wind turbines are used to convert the kinetic energy of wind into useful power. The wind turbine blades are fabricated using glass fiber-reinforced composite materials. Wind turbine blades are complex section. In order to improve the strength of the blades under varying loading conditions, spars are embedded in it. The spars are fastened with the composite shells of the blades using bolted connections. In order to affect this fastening, holes of appropriate size were drilled in the composite laminates. Delamination is the major failure in composite blades which is induced during drilling. Delamination is quantitatively measured using digital means. A comparison between the conventional ( FD) and adjusted ( FDA) delamination factors is presented. In order to effectively quantify the delamination, refined delamination factor ( FDR) is proposed. It is found that the proposed FDR predicts the failure in a better manner when compared with predictive capabilities of FD as well as FDA.


Sign in / Sign up

Export Citation Format

Share Document