Estimation of Rock In-Situ Stress by Acoustic and Electromagnetic Emission

2006 ◽  
Vol 13-14 ◽  
pp. 357-362 ◽  
Author(s):  
Yasuhiko Mori ◽  
P. Sedlak ◽  
Josef Sikula

The Kaiser Effect in acoustic emission is often used for an estimation of the stress to which rocks have been subjected. However, there are cases in which the Kaiser Effect is not clear, since the noises due to the contact and/or the stick slip between the pre-induced fracture surfaces are measured during the reloading process. In such cases, estimation of previous stress is difficult by the conventional method which is based on the acoustic emission activity observed under reloading process. In the tests for the Kaiser Effect on rocks, therefore, the noises must be eliminated from the acoustic emission generated from newly created cracks during the second loading process. Such techniques as analysis of the difference between the acoustic emission activity observed in the first and second reloading and the analysis of the change in the slope of the acoustic emission amplitude distribution have been proposed. In this paper we present a new method by which the maximum previous stress in rocks can be directly estimated without any post signal analysis. In the new method, simultaneous measurement of acoustic and electromagnetic emission during loading test of rock sample is employed. The electromagnetic emission in the deformation of rock sample generates only when the fresh surfaces due to cracking are created in the material, and the source of electromagnetic emission is the electrification between the fresh crack surfaces. This paper describes the simultaneous measurement of acoustic and electromagnetic emission useful for estimating the rock in-situ stress.

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kang Zhao ◽  
Shuijie Gu ◽  
Yajing Yan ◽  
Keping Zhou ◽  
Qiang Li ◽  
...  

Many deep underground excavation practices show that the size and distribution of in situ stress are the main factors resulting in the deformation and instability of the surrounding rock structure. The in situ stress measured by the Kaiser effect of rock is used by engineers because of its economy and convenience. However, due to the lack of quantitative judgment basis in determining the Kaiser point position, there is a large artificial error in the practical application. In response to the problem, this study systematically investigates the characteristics of rock acoustic emission curve on the basis of the fractal theory and establishes an accurate and simple interpretation method for determining the Kaiser point position. The indoor rock acoustic emission test was carried out by drilling a rock sample at a mine site. By using the conventional tangent method, the cumulative ringing count rate-time-stress curve of rock acoustic emission is analyzed to preliminarily determine the time range of Kaiser point appearance. Considering that the fractal dimension of the rock Kaiser point is lower than the adjacent point, the minimum point of the fractal dimension of this time range can be determined from the fractal dimension-time-stress curve. Such determined point is the Kaiser point. The size of the in situ stress is calculated using an analytical method. Based on the value of the in situ stress, the distribution of the in situ stress in the mining area is further analyzed using the geological structure of the mine. The maximum principal stress is 19.38 MPa, with a direction of N (30°-40°) E, and the minimum principal stress is 8.02 MPa with a direction of N (50°-60°) W. The maximum and minimum principal stresses are approximately in the horizontal plane. The intermediate principal stress is 11.73 MPa in vertically downward. These results are basically consistent with the distribution statistical law of the measured in situ stress fields in the world. The results presented in the study could provide a reference for the later mining, stability evaluation, and support of the surrounding rock.


2009 ◽  
Vol 6 (2) ◽  
pp. 176-180 ◽  
Author(s):  
Yan Jin ◽  
Zili Qi ◽  
Mian Chen ◽  
Guangqing Zhang ◽  
Guangqiang Xu

Rock Stress ◽  
2020 ◽  
pp. 389-394
Author(s):  
H. Watanabe ◽  
H. Tano ◽  
Ö. Aydan ◽  
R. Ulusay ◽  
E. Tuncay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document