A New Genetic Algorithm Based on Optimal Solution Orientation

2010 ◽  
Vol 139-141 ◽  
pp. 1779-1784
Author(s):  
Quan Wang ◽  
Jin Chao Liu ◽  
Pan Wang ◽  
Juan Ying Qin

Many researchers have indicated that standard genetic algorithm suffers from the dilemma---premature or non-convergence. Most researchers focused on finding better search strategies, and designing various new heuristic methods. It seemed effective. From another view, we can transform search space with a samestate-mapping. A special genetic algorithm applied to the new search space would achieve better performance. Thus, we present a new genetic algorithm based on optimal solution orientation. In this paper, a new genetic algorithm based on optimum solution orientation is presented. The algorithm is divided into "optimum solution orientation" phase and "highly accurately searching in local domain of global optimal solution" phase. Theoretical analysis and experiments indicate that OSOGA can find the "optimal" sub domain effectively. Cooperating with local search algorithm, OSOGA can achieve highly precision solution with limited computing resources.

2012 ◽  
Vol 542-543 ◽  
pp. 1467-1470
Author(s):  
Le Wei Yan ◽  
Yang Yang Chen

Heterogeneous strategy, population isolation, arithmetic crossover and optimum reserved strategy are used to improve micro-genetic algorithm (mGA) in this paper. Heterogeneous strategy is used to improve the probability of convergence to global optimal solution and quicken up the convergence. Reset frequency is decreased while the global and local searching capabilities of mGA between two resets are enhanced, which makes mGA searching the parameter space intelligently as the mode recognition information is preserved as much as possible. Adaptive random mutation, which used existing genetic information of the current groups, is used to increase efficient search. Finally, standard functions testing demonstrate that the improved mGA can find better optimum solutions with less computing cost than standard genetic algorithm (SGA).


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjin Liu ◽  
Xihong Chen ◽  
Yu Zhao

A prototype filter design for FBMC/OQAM systems is proposed in this study. The influence of both the channel estimation and the stop-band energy is taken into account in this method. An efficient preamble structure is proposed to improve the performance of channel estimation and save the frequency spectral efficiency. The reciprocal of the signal-to-interference plus noise ratio (RSINR) is derived to measure the influence of the prototype filter on channel estimation. After that, the process of prototype filter design is formulated as an optimization problem with constraint on the RSINR. To accelerate the convergence and obtain global optimal solution, an improved genetic algorithm is proposed. Especially, the History Network and pruning operator are adopted in this improved genetic algorithm. Simulation results demonstrate the validity and efficiency of the prototype filter designed in this study.


2014 ◽  
Vol 556-562 ◽  
pp. 4014-4017
Author(s):  
Lei Ding ◽  
Yong Jun Luo ◽  
Yang Yang Wang ◽  
Zheng Li ◽  
Bing Yin Yao

On account of low convergence of the traditional genetic algorithm in the late,a hybrid genetic algorithm based on conjugate gradient method and genetic algorithm is proposed.This hybrid algorithm takes advantage of Conjugate Gradient’s certainty, but also the use of genetic algorithms in order to avoid falling into local optimum, so it can quickly converge to the exact global optimal solution. Using Two test functions for testing, shows that performance of this hybrid genetic algorithm is better than single conjugate gradient method and genetic algorithm and have achieved good results.


2014 ◽  
Vol 889-890 ◽  
pp. 107-112
Author(s):  
Ji Ming Tian ◽  
Xin Tan

The design of the gearbox must ensure the simplest structure and the lightest weight under the premise of meeting the reliability and life expectancy. According to the requirement of wind turbine, an improved method combined dynamic penalty function with pseudo-parallel genetic algorithm is used to optimize gearbox. It takes the minimum volumes as object functions. It is showed that the ability to search the global optimal solution of improved genetic algorithm and less number of iterations. The global optimal solution is worked out quickly. The size parameters are optimized, as much as the driving stability and efficiency. To verify the feasibility of improved genetic algorithm, ring gear of the gearbox is analyzed. Static strength analysis shows that the optimization method is reasonable and effective.


2010 ◽  
Vol 40-41 ◽  
pp. 488-493
Author(s):  
Yong Sun ◽  
Mao Rui Zhang ◽  
Wei Wei Liu ◽  
Li Na Zhang ◽  
He Li

The genetic algorithm based on permutation distance definition is used to solve the laser antimissile system. When faced with multiple attacking targets, it is clearly important for the laser antimissile system to determine the sequence of the attacking targets to be intercepted so that the maximum attacking targets are destroyed. It’s very difficult to find the global optimal solution, especially when the number of the targets is greater than six. The permutation distance definition is introduced to measure the distribution of the population. The successive zeros permutation distance is to stop the genetic algorithm iterations. Finally, taking ten targets as an example, the simulation results show that the convergence of the algorithm is fast and this achievement can be used in the real application.


2014 ◽  
Vol 687-691 ◽  
pp. 1548-1551
Author(s):  
Li Jiang ◽  
Gang Feng Yan ◽  
Zhen Fan

Aiming at the bad performance when achieve rich colors of fabric with very limited yarns in the traditional woven industry, the paper comes up with a solution of selecting yarn from a set of yarns based on SAGA(simulated annealing genetic algorithm). In order to reduce the computational complexity, original image is compressed based on clustering algorithm. And the original yarns is divided into four regions based on color separation algorithm to narrow the feasible area. The result of experiments show that image compression and yarns division can greatly improve the speed of SAGA, and SAGA can effectively converges to global optimal solution.


Author(s):  
Miao Zhuang ◽  
Ali A. Yassine

Resources for development projects are often scarce in the real world. Generally, many projects are to be completed that rely on a common pool of resources. Besides resource constraints, there exists data dependency among tasks within each project. A genetic algorithm approach with one-point uniform crossover and a refresh operator is proposed to minimize the overall duration or makespan of multiple projects in a resource constrained multi project scheduling problem (RCMPSP) without violating inter-project resource constraints or intra-project precedence constraints. The proposed GA incorporates stochastic feedback or rework of tasks. It has the capability of capturing the local optimum for each generation and therefore ensuring a global best solution. The proposed Genetic Algorithm, with several variants of GA parameters is tested on sample scheduling problems with and without stochastic feedback. This algorithm demonstrates to provide a quick convergence to a global optimal solution and detect the most likely makespan range for parallel projects of tasks with stochastic feedback.


2012 ◽  
Vol 482-484 ◽  
pp. 1636-1639
Author(s):  
Yuan Yao ◽  
Yan Ling Zou ◽  
Qi Man Wu ◽  
Zhong Ren Guan

In order to make full use of chaotic mutation genetic algorithm and the chaotic mutation and bee evolution algorithm, the characteristics of the two algorithms, and the combination of chaotic mutation bee evolution algorithm is proposed. The algorithm in bee evolution process, to adapt to the value of group of smaller portions of the variation of individuals to chaos; to adapt to the value of group of large part of the individual, to the best individual as the center, change crossover operation, each generation is the best individual immune evolutionary iterative calculation. Thus, as the iteration, the algorithm not only fast convergence, and can also by a higher accuracy by the global optimal solution.


2014 ◽  
Vol 687-691 ◽  
pp. 1367-1372
Author(s):  
Jian Ping Li ◽  
Ai Ping Lu ◽  
Hao Chang Wang ◽  
Xin Li ◽  
Pan Chi Li

In classical harmony search algorithm, only one harmony vector is obtained in each of iteration, which affects its search ability. We propose an improve harmony search algorithm in this paper. In our approach, the number of harmony vectors obtained in each of iteration is equivalent to the population size, and all newly generated harmony vectors are put into the harmony memory array. Then, all harmony vectors are sorted by descending order of the fitness, and the first half individuals are served as the next generation of populations. Experimental results show that our approach is obviously superior to the classical one under the same iteration steps and the same running time, which reveals that our approach can effectively generate the excellent individuals approximating the global optimal solution and enhance the optimization ability of classical harmony search algorithm.


2013 ◽  
Vol 441 ◽  
pp. 762-767
Author(s):  
Ning Wang ◽  
Shi You Yang

To find the global optimal solution of a multimodal function with both continuous and discrete variables, an improved tabu search algorithm is proposed. The improvements include new generating mechanisms for initial and neighborhood solutions, the exclusive use of the tabu list, the restarting methodology for different cycle of iterations as well as the shifting away from the worst solutions. The numerical results on two numerical examples are reported to demonstrate the feasibility and merit of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document