Research on the Splitting Measurement Method of Space Position in Three-Dimensional Field

2010 ◽  
Vol 139-141 ◽  
pp. 2015-2018
Author(s):  
De Xi Wang ◽  
Qin Li ◽  
Fu Bao Li ◽  
Zong Ke Li

A research on measurement method of space position in three-dimensional field was demonstrated in this paper. According to the basic methods and principles of three-dimensional spatial position measurement, optical path of splitting design was used to divide an object point, through the red and green filters, into two beams of red and green, and then, through flat mirror, rectangular prism, cube prism and other optical design, it imaged on the same CCD camera film. Standard mesh was used to determine the relationship between two different spatial coordinates and the spatial pixel coordinates in the measurement space, and then the calibration relationship between object point coordinates and pixel coordinates were determined. This calibration relationship clear the error caused by the method of measurement and the measurement system. Through the determination algorithm of spatial location in three-dimensional field, the two corresponding lines of space was obtained, and its point of intersection is the spatial coordinate.

2018 ◽  
Vol 30 (3) ◽  
pp. 354-362 ◽  
Author(s):  
Naoya Hatakeyama ◽  
◽  
Tohru Sasaki ◽  
Kenji Terabayashi ◽  
Masahiro Funato ◽  
...  

Recently, many studies on unmanned aerial vehicle (UAVs) that perform position control using camera images have been conducted. The measurements of the surrounding environment and position of the mobile robot are important in controlling the UAV. The distance and direction of the optical ray to the object can be obtained from the diameter and coordinates in the image. In these studies, various camera systems using plane cameras, fisheye cameras, or omnidirectional cameras are used. Because these camera systems have different geometrical optics, one simple image position measurement method cannot yield the position and posture. Therefore, we propose a new method that measures the position from the size of three-dimensional landmarks using omnidirectional cameras. Three-dimensional measurements are performed by these omnidirectional cameras using the distance and direction to the object. This method can measure three-dimensional positions from the direction and distance of the ray; therefore, if the optical path such as the reflection or refraction is known, it can perform measurements using a different optical system’s camera. In this study, we construct a method to obtain the relative position and relative posture necessary for the self-position estimation based on an object with an omnidirectional camera; further, we verify this method by experiment.


1998 ◽  
Vol 4 (S2) ◽  
pp. 80-81
Author(s):  
M. K. Miller

In a three dimensional atom probe, the identity and spatial coordinates of the atoms field evaporated from the specimen are determined. Their identity is calculated from the flight time from the specimen to the single atom detector. The x and y coordinates of the atom in the specimen are determined from the coordinates of its impact position on the position-sensitive detector and the z coordinate is determined from its position in the evaporation sequence. These data may then be reconstructed to visualize and quantify the distribution of all the elements in the specimen. Several types of position-sensitive detectors have been used including a wedge-and-strip detector (position-sensitive atom probe), a 10 by 10 array of anodes (tomographic atom probe), and a gateable CCD camera (optical atom probe). The wedge-and strip and the CCD camera detectors both suffer from the limitation that if more than one atom strikes the detector on a field evaporation pulse then the impact positions cannot be determined in many cases.


2017 ◽  
Vol 37 (8) ◽  
pp. 0812002 ◽  
Author(s):  
常新宇 Chang Xinyu ◽  
曾雅楠 Zeng Yanan ◽  
雷 海 Lei Hai ◽  
姚成文 Yao Chengwen ◽  
卢钧胜 Lu Junsheng ◽  
...  

Author(s):  
Robert W. Mackin

This paper presents two advances towards the automated three-dimensional (3-D) analysis of thick and heavily-overlapped regions in cytological preparations such as cervical/vaginal smears. First, a high speed 3-D brightfield microscope has been developed, allowing the acquisition of image data at speeds approaching 30 optical slices per second. Second, algorithms have been developed to detect and segment nuclei in spite of the extremely high image variability and low contrast typical of such regions. The analysis of such regions is inherently a 3-D problem that cannot be solved reliably with conventional 2-D imaging and image analysis methods.High-Speed 3-D imaging of the specimen is accomplished by moving the specimen axially relative to the objective lens of a standard microscope (Zeiss) at a speed of 30 steps per second, where the stepsize is adjustable from 0.2 - 5μm. The specimen is mounted on a computer-controlled, piezoelectric microstage (Burleigh PZS-100, 68/μm displacement). At each step, an optical slice is acquired using a CCD camera (SONY XC-11/71 IP, Dalsa CA-D1-0256, and CA-D2-0512 have been used) connected to a 4-node array processor system based on the Intel i860 chip.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii76-ii76
Author(s):  
Radhika Mathur ◽  
Sriranga Iyyanki ◽  
Stephanie Hilz ◽  
Chibo Hong ◽  
Joanna Phillips ◽  
...  

Abstract Treatment failure in glioblastoma is often attributed to intratumoral heterogeneity (ITH), which fosters tumor evolution and generation of therapy-resistant clones. While ITH in glioblastoma has been well-characterized at the genomic and transcriptomic levels, the extent of ITH at the epigenomic level and its biological and clinical significance are not well understood. In collaboration with neurosurgeons, neuropathologists, and biomedical imaging experts, we have established a novel topographical approach towards characterizing epigenomic ITH in three-dimensional (3-D) space. We utilize pre-operative MRI scans to define tumor volume and then utilize 3-D surgical neuro-navigation to intra-operatively acquire 10+ samples representing maximal anatomical diversity. The precise spatial location of each sample is mapped by 3-D coordinates, enabling tumors to be visualized in 360-degrees and providing unprecedented insight into their spatial organization and patterning. For each sample, we conduct assay for transposase-accessible chromatin using sequencing (ATAC-Seq), which provides information on the genomic locations of open chromatin, DNA-binding proteins, and individual nucleosomes at nucleotide resolution. We additionally conduct whole-exome sequencing and RNA sequencing for each spatially mapped sample. Integrative analysis of these datasets reveals distinct patterns of chromatin accessibility within glioblastoma tumors, as well as their associations with genetically defined clonal expansions. Our analysis further reveals how differences in chromatin accessibility within tumors reflect underlying transcription factor activity at gene regulatory elements, including both promoters and enhancers, and drive expression of particular gene expression sets, including neuronal and immune programs. Collectively, this work provides the most comprehensive characterization of epigenomic ITH to date, establishing its importance for driving tumor evolution and therapy resistance in glioblastoma. As a resource for further investigation, we have provided our datasets on an interactive data sharing platform – The 3D Glioma Atlas – that enables 360-degree visualization of both genomic and epigenomic ITH.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 145
Author(s):  
Jianwei Chen ◽  
Liangming Wang ◽  
Jian Fu ◽  
Zhiwei Yang

A complex wind field refers to the typical atmospheric disturbance phenomena existing in nature that have a great influence on the flight of aircrafts. Aimed at the issues involving large volume of data, complex computations and a single model in the current wind field simulation approaches for flight environments, based on the essential principles of fluid mechanics, in this paper, wind field models for two kinds of wind shear such as micro-downburst and low-level jet plus three-dimensional atmospheric turbulence are established. The validity of the models is verified by comparing the simulation results from existing wind field models and the measured data. Based on the principle of vector superposition, three wind field models are combined in the ground coordinate system, and a comprehensive model of complex wind fields is established with spatial location as the input and wind velocity as the output. The model is applied to the simulated flight of a rocket projectile, and the change in the rocket projectile’s flight attitude and flight trajectory under different wind fields is analyzed. The results indicate that the comprehensive model established herein can reasonably and efficiently reflect the influence of various complex wind field environments on the flight process of aircrafts, and that the model is simple, extensible, and convenient to use.


2011 ◽  
Vol 403-408 ◽  
pp. 5182-5186
Author(s):  
Sheng Yi Yang ◽  
An Gu ◽  
Meng Li ◽  
Chang Jian Lu

In robotic-assisted heart surgery, the method of canceling the relative motion between the surgical site on the heart and the surgical instruments was introduced in this paper. A whisker sensor was designed for three dimensional position measurement in beating heart surgery. Analytical models were developed according to the classical mechanics of materials, and theoretical formulas were derived for displacement measurement. Feasibility and effectiveness of the method were verified by simulation experiments. We can obtain measurements by loading displacement to the whisker sensor, and draw conclusions by comparing the measurements.


Sign in / Sign up

Export Citation Format

Share Document