Traditional Chinese Medicine Pulse-Condition Simulation and Wavelet Recognition Method

2010 ◽  
Vol 139-141 ◽  
pp. 2029-2032
Author(s):  
Dong Cao ◽  
Jian Wei Ye ◽  
Jun Yi ◽  
Wen Jie Ruan ◽  
Chong Chen

The human pulse-condition diagnosis is an important part of the traditional Chinese medicine (TCM) which is difficult to recognize accurately by doctor’s subjective experience. Objective identification of pulse-conditions has important meanings for modernization of TCM. In this paper human pulse-condition system transfer function model and model parameter estimation were introduced, which are used to construct four kinds of typical pulse-conditions simulation signals. There are normal pulse, taut pulse, slippery pulse and thready pulse. And then, discrete wavelet transform for extracting the multi-scale energy characteristics and wavelet packet decomposition for extracting the multi-band energy characteristics are proposed so as to recognize the pulse-conditions simulation signals. The results show that the recognition effect of discrete wavelet transform method is better. Moreover, the data features of characteristic parameters demonstrate the reality of simulation signals.

2015 ◽  
Vol 81 ◽  
pp. 56-64 ◽  
Author(s):  
U. Rajendra Acharya ◽  
K. Sudarshan Vidya ◽  
Dhanjoo N. Ghista ◽  
Wei Jie Eugene Lim ◽  
Filippo Molinari ◽  
...  

2007 ◽  
Vol 07 (02) ◽  
pp. 199-214 ◽  
Author(s):  
S. M. DEBBAL ◽  
F. BEREKSI-REGUIG

This work investigates the study of heartbeat cardiac sounds through time–frequency analysis by using the wavelet transform method. Heart sounds can be utilized more efficiently by medical doctors when they are displayed visually rather through a conventional stethoscope. Heart sounds provide clinicians with valuable diagnostic and prognostic information. Although heart sound analysis by auscultation is convenient as a clinical tool, heart sound signals are so complex and nonstationary that they are very difficult to analyze in the time or frequency domain. We have studied the extraction of features from heart sounds in the time–frequency (TF) domain for the recognition of heart sounds through TF analysis. The application of wavelet transform (WT) for heart sounds is thus described. The performances of discrete wavelet transform (DWT) and wavelet packet transform (WP) are discussed in this paper. After these transformations, we can compare normal and abnormal heart sounds to verify the clinical usefulness of our extraction methods for the recognition of heart sounds.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 1
Author(s):  
T Ananda Babu ◽  
Dr P. Rajesh Kumar

The prediction of term labor by analyzing the uterine magnetomyographic signals attempted in this research. The existing works did not focus on the classification of the signals. Publicly available MIT-BIH database records were divided into term-labor and term-nonlabor groups. This research presents two methods for feature extraction, discrete wavelet transform and wavelet packet transform. Energy, standard deviation, variance, entropy and waveform length of transform coefficients used in the first method. The normalized logarithmic energy of wavelet coefficients from each packet of the total wavelet packet tree used as the feature space for the second method. The labor assessment done through the classification of the features by using five different classifiers for different mother wavelet families. Discrete wavelet transform features extracted using coif5 wavelet with random subspace classification gives the accuracy, precision and FPrates of 93.9286%, 94.2014% and 5.7986% respectively. Using sym8 wavelet for wavelet packet transform features classified with SVM classifier performed well with 95.8763% accuracy, 95.9719% precision and 4.0281% FPrate. The results obtained from the research will be helpful in term labor assessment and understanding the parturition process.  


Author(s):  
J. Jerisha Liby ◽  
T. Jaya

This paper proposes a new watermarking algorithm based on a single-level discrete wavelet transform (DWT). This method initially chooses ‘[Formula: see text]’ number of carrier frames to hide the data. After estimating the carrier frames, each frame is separated into RGB frames. Each R, G, and B frames are decomposed using a single-level DWT. The horizontal and vertical coefficients are selected to embed the watermark information since small changes in the horizontal and vertical coefficients do not highly affect the quality of the video frame. The watermark image pixels are shuffled using a predetermined key before embedding. The shuffled pixels are converted to binary, and they are grouped into three data matrices. Each data matrix is embedded in horizontal and vertical coefficients of the R, G and B frames of the video frame. After embedding the data, the watermarked video is reconstructed using the original approximation coefficients, the embed coefficients, and the original diagonal coefficients. During the extraction process, the watermark is extracted from the horizontal and vertical coefficients of the watermarked video. Experimental result reveals that the proposed method outperforms other related methods in terms of video quality and structural similarity index measurement.


Author(s):  
Abdullah Al Kafee ◽  
Aydin Akan

Electrogastrogram is used for the abdominal surface measurement of the gastric electrical activity of the human stomach. The electrogastrogram technique has significant value as a clinical tool because careful electrogastrogram signal recordings and analyses play a major role in determining the propagation and coordination of gastric myoelectric abnormalities. The aim of this article is to evaluate electrogastrogram features calculated by line length features based on the discrete wavelet transform method to differentiate healthy control subjects from patients with functional dyspepsia and diabetic gastroparesis. For this analysis, the discrete wavelet transform method was used to extract electrogastrogram signal characteristics. Next, line length features were calculated for each sub-signal, which reflect the waveform dimensionality variations and represent a measure of sensitivity to differences in signal amplitude and frequency. The analysis was carried out using a statistical analysis of variance test. The results obtained from the line length analysis of the electrogastrogram signal prove that there are significant differences among the functional dyspepsia, diabetic gastroparesis, and control groups. The electrogastrogram signals of the control subjects had a significantly higher line length than those of the functional dyspepsia and diabetic gastroparesis patients. In conclusion, this article provides new methods with increased accuracy obtained from electrogastrogram signal analysis. The electrogastrography is an effective and non-stationary method to differentiate diabetic gastroparesis and functional dyspepsia patients from the control group. The proposed method can be considered a key test and an essential computer-aided diagnostic tool for detecting gastric myoelectric abnormalities in diabetic gastroparesis and functional dyspepsia patients.


Author(s):  
Zhong Zhang ◽  
Jin Ohtaki ◽  
Hiroshi Toda ◽  
Takashi Imamura ◽  
Tetsuo Miyake

In this study, in order to verify the effectiveness of the variable filter band discrete wavelet transform (VFB-DWT) and construction method of the variable-band filter (VBF), a fetal ECG extraction has been carried out and the main results obtained are as follows. The approach to configuration VBF by selecting the frequency band only where the fetal ECG component is present was effective to configure the optimal base sensible signal. The extraction of the fetal ECG was successful by applying the wavelet shrinkage to VFB-DWT, which used the constructed VBF. The information entropy was selected as an evaluation index, and two kinds of ECG signals are used to evaluate the wavelet transform basis between the wavelet packet transform (WPT) and the VFB-DWT. One is a synthesized signal composed of white noise, the maternal ECG and the fetal ECG. The other signal is the real target signal separated by independent component analysis (ICA) and has the mother's body noise, the maternal ECG and the fetal ECG. The result shows that the basis by VBF of the VFB-DWT is better than the basis of the WPT that was chosen by the best basis algorithm (BBA).


Sign in / Sign up

Export Citation Format

Share Document