(TiB+TiC) Hybrid Titanium Matrix Composites Shot Sleeve for Aluminum Alloys Diecasting

2006 ◽  
Vol 15-17 ◽  
pp. 231-235
Author(s):  
Bong Jae Choi ◽  
Si Young Sung ◽  
Young Jig Kim

The aim of this study is to fabricate an α-case free (TiB+TiC) hybrid titanium matrix composites (TMCs) shot sleeve for aluminum alloy diecasting by in-situ synthesis and investment casting. Granular 1.88 wt% B4C was added to a titanium matrix in a vacuum induction melting furnace. The synthesized (TiB+TiC) TMCs were examined using electron probe micro-analysis and transmission electron microscopy. The results of the in-situ synthesis and investment casting of the TMCs show that our casting route constitutes an effective approach to the economic net-shape forming of TMC sleeves.

2007 ◽  
Vol 334-335 ◽  
pp. 297-300
Author(s):  
Si Young Sung ◽  
Bong Jae Choi ◽  
Young Jig Kim

The aim of this study is to evaluated the possibility of the in-situ synthesized (TiC+TiB) reinforced titanium matrix composites (TMCs) for the application of structural materials. In-situ synthesis and casting of TMCs were carried out in a vacuum induction melting furnace with Ti and B4C. The synthesized TMCs were characterized using scanning electron microscopy, an electron probe micro-analyzer and transmission electron microscopy, and evaluated through thermodynamic calculations. The spherical TiC plus needle-like and large, many-angled facet TiB reinforced TMCs can be synthesized with Ti and B4C by a melting route.


2007 ◽  
Vol 345-346 ◽  
pp. 1213-1216
Author(s):  
Si Young Sung ◽  
Bong Jae Choi ◽  
Young Jig Kim

The aim of this study is to establish the net-shape forming of titanium matrix composites (TMCs) shot sleeve for Al alloys die-casting using a casting route. In-situ synthesis and casting of TMCs were carried out in a vacuum induction melting furnace. The synthesized (TiC+TiB) TMCs were examined using an scanning electron microscopy and electron probe micro-analyzer. The thermo-physical variables estimated by casting process were applied to the modeling of TMCs shot-sleeve casting using the Magmasoft®. The results of the investment casting and modeling of TMCs confirm that the casting route can be an effective approach for the economic net-shape forming of TMCs shot sleeve.


2006 ◽  
Vol 510-511 ◽  
pp. 310-313
Author(s):  
Si Young Sung ◽  
Bong Jae Choi ◽  
Sang Hwa Lee

The aim of this study is to investigate the applicability of titanium matrix composites (TMCs) sleeve to Al alloys die-casting. Ti and 1.88 mass% B4C were prepared for the synthesis of 10 vol% (TiC+TiB) hybrid TMCs. In-situ synthesis and net-shape forming of TMCs were carried out in a vacuum induction melting furnace. The synthesized (TiC+TiB) TMCs were examined using scanning electron microscopy, an electron probe micro-analyzer, X-ray diffraction and transmission electron microscopy. The resistance-ability of (TiC+TiB) TMCs to molten Al alloys attack was also examined. Their reactions were carried out in a furnace at 993 K for times varying from 0 to 1200 s. In the case of conventional sleeve material, H13 steel, there were severe interfacial reactions and erosion after 60 s. On the other hand, the resistance of (TiC+TiB) TMCs to interfacial reactions and erosion by molten A380 alloy was significantly increased.


2007 ◽  
Vol 61 (11-12) ◽  
pp. 2368-2372 ◽  
Author(s):  
Zhifeng Yang ◽  
Weijie Lu ◽  
Lin Zhao ◽  
Junqiang Lu ◽  
Jining Qin ◽  
...  

2005 ◽  
Vol 475-479 ◽  
pp. 2551-2554 ◽  
Author(s):  
Si Young Sung ◽  
Keun Chang Park ◽  
Myoung Gyun Kim ◽  
Young Jig Kim

The aim of the present work is to investigate the possibility of in-situ synthesis and net-shape of the titanium matrix composites (TMCs) using a casting route. From the scanning electron microscopy (SEM), electron probe micro-analyzer (EPMA), X-ray diffraction (XRD) and thermodynamic calculations, the spherical TiC and needle like TiB reinforced hybrid TMCs could be obtained by the conventional casting route between titanium and B4C. No melts-mold reaction could be possible between (TiC+TiB) hybrid TMCs and the SKKU mold, since the mold is composed of interstitial and substitutional reaction products. Not only the sound in-situ synthesis but also the economic net-shape of TMCs could be possible by conventional casting route.


2007 ◽  
Vol 127 ◽  
pp. 155-160
Author(s):  
Di Zhang ◽  
Zhi Feng Yang ◽  
Wei Jie Lu ◽  
Dong Xu

Novel hybrid TiB, TiC and rare earth oxide (Re2O3) reinforced titanium matrix composites were in situ synthesized utilizing the reaction between Ti, B4C (or C), rare earth (Re) and B2O3 through homogeneously melting in a non-consumable vacuum arc remelting furnace. In this work, Nd and Y were chosen as rare earth (Re) added in the in situ reaction. The thermodynamics of in situ synthesis reaction was studied. The results of X-ray diffraction (XRD) proved that no other phases appeared except for TiB, TiC and Re2O3. The microstructures of the composites were examined by scanning electron microscope (SEM) and backscattered scanning electron microscope (SEM). The results showed that there were mainly three kinds of reinforcements: TiB whiskers, TiC particles and Re2O3 particles. The reinforcements were fine and were homogeneously distributed in the matrix. The interfaces of TiB-TiC and Nd2O3-Ti were examined by high-resolution transmission electron microscopy (HREM).Transmission electron microscopy (TEM) and selected area diffraction (SAD) were used to analyze the orientation relationships of TiB-TiC and Nd2O3-Ti. The orientation relationship between TiB and TiC can be described as: [001] TiB //[001] TiC , (010) TiB //(110) TiC . The orientation relationship of Nd2O3 and α-Ti can be described as: [110] Nd2O3 //[ 1213 ] Ti , (111) Nd2O3 //(1101) Ti , ( 001) Nd2O3 //( 2110 ) Ti .


2006 ◽  
Vol 419 (1-2) ◽  
pp. 76-80 ◽  
Author(s):  
Z.F. Yang ◽  
W.J. Lu ◽  
D. Xu ◽  
J.N. Qin ◽  
D. Zhang

Sign in / Sign up

Export Citation Format

Share Document