Preparation of EG-g-MWCNTs and Antistatic Poly(Ethylene Terephthalate) Nanocomposites

2010 ◽  
Vol 150-151 ◽  
pp. 1017-1021
Author(s):  
Ruo Xi Wang ◽  
Hua Wang ◽  
Xing You Tian ◽  
Qing Yan ◽  
Kang Zheng ◽  
...  

Antistatic Poly(ethylene terephthalate) (PET) materials had been successfully prepared through solution-blending incorporation of ethylene glycol-graft-Multi-walled carbon nanotubes (EG-g-MWCNTs). MWCNTs were first carboxylated and then esterified with EG to yield EG-g-MWCNTs. The FT-IR spectra, TEM images, Raman spectra, TGA curves and electrical conductivity were investigated, which indicated that the agglomeration degree of MWCNTs has been reduced and the conductivity keeps as high as 4.278 S/cm after the modification of EG. On the other hand, EG-g-MWCNTs dispersed well in EG, which was one of the synthetic monomers for PET, and thus ensured its good compatibility with PET. As a result, the electrical conductivity of PET/EG-g-MWCNTs nanocomposites (0.1 wt%) was seven orders of magnitude higher than pure PET and reached the antistatic level.

2012 ◽  
Vol 549 ◽  
pp. 553-557 ◽  
Author(s):  
Ruo Xi Wang ◽  
Hua Wang ◽  
Kang Zheng ◽  
Xing You Tian

A convenient method had been developed for preparing antistatic Poly(ethylene terephthalate)/multiwalled carbon nanotubes (PET/MWCNTs) nanocomposites. Polyaniline (PANI) was employed to coat MWCNTs as interfacial modifier. At first, the PANI-coating MWCNTs (PANI-c-MWCNTs) were prepared via miniemulsion polymerization of aniline at the presence of MWCNTs. The TEM images, FT-IR spectra, UV-Vis spectra and electrical conductivity were investigated, which indicated that the MWCNTs were coated with a conductive PANI ultrathin film while the morphology and electrical property had almost no damage. Then the PANI-c-MWCNTs were added into PET through in-situ polymerization method. The TEM images indicate that PANI-c-MWCNTs could be well dispersed in PET matrix, which had important positive effects on the electrical conductive properties of PET/PANI-c-MWCNTs nanocomposites. The results indicate that the electrical conductivity of PET/1.0 wt% PANI-c-MWCNTs nanocomposites reaches the antistatic level.


Sign in / Sign up

Export Citation Format

Share Document