Effective Thermal Conductivity of Composites with Different Particle Geometries and Interfacial Thermal Resistance

2010 ◽  
Vol 152-153 ◽  
pp. 269-273
Author(s):  
Mei Zhang ◽  
Peng Cheng Zhai

A new micromechanical method, the weighted residual self-consistent method (WRSCM) is developed to study the effective thermal conductivity of two-phase composites with different particle geometries in the presence of a thermal barrier resistance at the interface between constituents. The imperfect interface involves the continuity of the normal flux but allow for a finite temperature differences across the interface. Within the framework of self-consistent scheme, the effective thermal conductivity of two-phase composite is obtained using numerical iterative method on the basis of a surface integral of temperature over the imperfect interfaces. Numerical results show that for the given composite system, due to the existence of an interfacial thermal resistance, the particle geometries have significant impact on the effective thermal conductivity of composites.

2008 ◽  
Vol 75 (5) ◽  
Author(s):  
H. M. Yin ◽  
G. H. Paulino ◽  
W. G. Buttlar ◽  
L. Z. Sun

By means of a fundamental solution for a single inhomogeneity embedded in a functionally graded material matrix, a self-consistent model is proposed to investigate the effective thermal conductivity distribution in a functionally graded particulate nanocomposite. The “Kapitza thermal resistance” along the interface between a particle and the matrix is simulated with a perfect interface but a lower thermal conductivity of the particle. The results indicate that the effective thermal conductivity distribution greatly depends on Kapitza thermal resistance, particle size, and degree of material gradient.


2012 ◽  
Vol 249-250 ◽  
pp. 904-909 ◽  
Author(s):  
Syed Aadil Hassan ◽  
Hassaan Ahmed ◽  
Asif Israr

In this paper a theoretical relationship for the effective thermal conductivity of a multiphase transversely isotropic composite system is obtained. The Generalized Self-Consistent Method and simple energy balance principle is employed to derive a more appropriate model. In the derivation, it is assumed that the orientation of fiber within the transversely isotropic composite system is unidirectional and surrounded by two different phases of porous and matrix phase. A combined effect of these three different phases on the effective thermal conductivity of the composite system in transverse direction is studied. The effect of the interfacial contact conductance between the fibers and porous medium is also considered. Results of effective thermal conductivity are plotted against volume fraction and conductance which shows extremely good agreement.


2018 ◽  
Vol 12 ◽  
pp. 454-461 ◽  
Author(s):  
Ali Khodayari ◽  
Matteo Fasano ◽  
Masoud Bozorg Bigdeli ◽  
Shahin Mohammadnejad ◽  
Eliodoro Chiavazzo ◽  
...  

Author(s):  
Kien Trung Nguyen ◽  
Luat Van Nguyen ◽  
Chinh Duc Pham

A simple method is introduced for computing the effective conductivity of isotropic composite with imperfect interface. Based on the doubly-coated circle assemblage model, one can determine the effective thermal conductivity of the composite. The application of this model to the composite with imperfect interface of the Kapitza's type is proposed. The results obtained were compared with the FFT simulation and the equivalent inclusion approximation in 2D show the effectiveness of the methods.


Sign in / Sign up

Export Citation Format

Share Document